Calculation of acoustic intensity using the phase and amplitude gradient estimator (PAGE) method has been shown to increase the effective upper frequency limit beyond the traditional p-p method when the source of interest is broadband in frequency [Torrie, Whiting, Gee, Neilsen, and Sommerfeldt, Proc. Mtgs. Acoust. 23, 030005 (2015)]. PAGE processing calculates intensity for narrowband sources without bias error up to the spatial Nyquist frequency [Succo, Sommerfeldt, Gee, and Neilsen, Proc. Mtgs. Acoust. 30, 030015 (2018)]. The present work demonstrates that for narrowband sources with frequency content above the spatial Nyquist frequency, additive low-level broadband noise can improve intensity calculations. To be effective, the angular separation between the source and additive noise source should be less than 30°, while using phase unwrapping with a smaller angular separation will increase the usable bandwidth. The upper frequency limit for the bandwidth extension depends on angular separation, sound speed, and probe microphone spacing. Assuming the signal-to-additive-noise ratio (SNRa) is larger than 10 dB, the maximum level and angular bias errors incurred by the additive broadband noise beneath the frequency limit—or up until probe scattering effects must be taken into account—are less than 0.5 dB and 2.5°, respectively. Smaller angular separation yields smaller bias errors.

1.
J. A.
Mann
and
J.
Tichy
, “
Near-field identification of vibration sources, resonant cavities, and diffraction using acoustic intensity measurements
,”
J. Acoust. Soc. Am.
90
,
720
729
(
1991
).
2.
F.
Jacobsen
, “
Spatial sampling errors in sound power estimation based upon intensity
,”
J. Sound Vib.
145
,
129
149
(
1991
).
3.
F. J.
Fahy
,
Sound Intensity
(
Thomson Press
,
Bury St Edmunds, Suffolk, UK
,
1995
).
4.
ANSI/ASA S1.9:1996
:
Instruments for the Measurement of Sound Intensity
(
Acoustical Society of America
,
Melville, NY
,
1996
).
5.
F. J.
Fahy
, “
Measurement of acoustic intensity using the cross-spectral density of two microphone signals
,”
J. Acoust. Soc. Am.
62
,
1057
1059
(
1977
).
6.
G.
Pavić
, “
Measurement of sound intensity
,”
J. Sound Vib.
51
,
533
545
(
1977
).
7.
J. Y.
Chung
, “
Cross-spectral method of measuring acoustic intensity without error caused by instrument phase mismatch
,”
J. Acoust. Soc. Am.
64
,
1613
1616
(
1978
).
8.
F.
Jacobsen
, “
Intensity techniques
,” in
Handbook of Signal Processing in Acoustics
(
Springer
,
New York
,
2008
), pp.
1109
1127
.
9.
F.
Jacobsen
, “
Sound intensity
,” in
Springer Handbook of Acoustics
(
Springer
,
New York
,
2007
), pp.
1053
1075
.
10.
F.
Jacobsen
, “
Random errors in sound intensity estimation
,”
J. Sound Vib.
128
,
247
257
(
1989
).
11.
A. F.
Seybert
, “
Statistical errors in acoustic intensity measurements
,”
J. Sound Vib.
75
,
519
526
(
1981
).
12.
T.
Loyau
and
J.-C.
Pascal
, “
Statistical errors in the estimation of the magnitude and direction of the complex acoustic intensity vector
,”
J. Acoust. Soc. Am.
97
,
2942
2962
(
1995
).
13.
C. P.
Wiederhold
,
K. L.
Gee
,
J. D.
Blotter
, and
S. D.
Sommerfeldt
, “
Comparison of methods for processing acoustic intensity from orthogonal multimicrophone probes
,”
J. Acoust. Soc. Am.
131
,
2841
2852
(
2012
).
14.
J.-C.
Pascal
and
J.-F.
Li
, “
A systematic method to obtain 3D finite-difference formulations for acoustic intensity and other energy quantities
,”
J. Sound Vib.
310
,
1093
1111
(
2008
).
15.
C. P.
Wiederhold
,
K. L.
Gee
,
J. D.
Blotter
,
S. D.
Sommerfeldt
, and
J. H.
Giraud
, “
Comparison of multimicrophone probe design and processing methods in measuring acoustic intensity
,”
J. Acoust. Soc. Am.
135
,
2797
2807
(
2014
).
16.
F.
Jacobsen
, “
A simple and effective correction for phase mis-match in intensity probes
,”
Appl. Acoust.
33
,
165
180
(
1991
).
17.
T.
Yanagisawa
and
N.
Koike
, “
Cancellation of both phase mismatch and position errors with rotating microphones in sound intensity measurements
,”
J. Sound Vib.
113
,
117
126
(
1987
).
18.
T.
Iino
,
H.
Tatekawa
,
H.
Mizukawa
, and
H.
Suzuki
, “
Numerical evaluation of three-dimensional sound intensity measurement accuracies and a proposal for an error correction method
,”
Acoust. Sci. Technol.
34
,
34
41
(
2013
).
19.
D. K.
Torrie
,
E. B.
Whiting
,
K. L.
Gee
,
T. B.
Neilsen
, and
S. D.
Sommerfeld
, “
Initial laboratory experiments to validate a phase and amplitude gradient estimator method for the calculation of acoustic intensity
,”
Proc. Mtgs. Acoust.
23
,
030005
(
2015
).
20.
D. C.
Thomas
,
B. Y.
Christensen
, and
K. L.
Gee
, “
Phase and amplitude gradient method for the estimation of acoustic vector quantities
,”
J. Acoust. Soc. Am.
137
,
3366
3376
(
2015
).
21.
B. Y.
Christensen
, “
Investigation of a new method of estimating acoustic intensity and its application to rocket noise
,” Master's thesis,
Brigham Young University
,
Provo, UT
,
2014
.
22.
J. A.
Mann
,
J.
Tichy
, and
A. J.
Romano
, “
Instantaneous and time-averaged energy transfer in acoustic fields
,”
J. Acoust. Soc. Am.
82
,
17
30
(
1987
).
23.
J. A.
Mann
and
J.
Tichy
, “
Acoustic intensity analysis: Distinguishing energy propagation and wave-front propagation
,”
J. Acoust. Soc. Am.
90
,
20
25
(
1991
).
24.
K. F.
Succo
,
S. D.
Sommerfeldt
,
K. L.
Gee
, and
T. B.
Neilsen
, “
Acoustic intensity of narrowband sources using the phase and amplitude gradient estimator method
,”
Proc. Mtgs. Acoust.
30
,
030015
(
2017
).
25.
D. C.
Ghiglia
and
M. D.
Pritt
,
Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software
(
Wiley
New York
,
1998
).
26.
T. A.
Stout
,
K. L.
Gee
,
T. B.
Neilsen
,
A. T.
Wall
, and
M. M.
James
, “
Source characterization of full-scale jet noise using acoustic intensity
,”
Noise Control Eng. J.
63
,
522
536
(
2015
).
27.
K. L.
Gee
,
T. B.
Neilsen
,
S. D.
Sommerfeldt
,
M.
Akamine
, and
K.
Okamoto
, “
Experimental validation of acoustic intensity bandwidth extension by phase unwrapping
,”
J. Acoust. Soc. Am.
141
,
EL357
EL362
(
2017
).
28.
K. L.
Gee
,
T. B.
Neilsen
,
E. B.
Whiting
,
D. K.
Torrie
,
M.
Akamine
,
K.
Okamoto
,
S.
Teramoto
, and
S.
Tsutsumi
, “
Application of a phase and amplitude gradient estimator to intensity-based laboratory-scale jet noise source characterization
,” in
Proceedings of the Berlin Beamforming Conference
, Berlin, Germany (February 24–25, 2016), Paper No. BeBeC-2016-D3.
29.
K. L.
Gee
,
M.
Akamine
,
K.
Okamoto
,
T. B.
Neilsen
,
M. R.
Cook
,
S.
Teramoto
, and
T.
Okunuki
, “
Characterization of supersonic laboratory-scale jet noise with vector acoustic intensity
,” in
Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference
, Denver, CO (June 5–9, 2017), p.
3519
.
30.
M. R.
Cook
,
K. L.
Gee
,
T. B.
Neilsen
, and
S. D.
Sommerfeldt
, “
The effects of contaminating noise on the calculation of acoustic intensity for pressure gradient methods
,”
J. Acoust. Soc. Am.
145
,
173
184
(
2019
).
31.
M. R.
Cook
,
K. L.
Gee
,
S. D.
Sommerfeldt
, and
T. B.
Neilsen
, “
Coherence-based phase unwrapping for broadband acoustic signals
,”
Proc. Mtgs. Acoust.
30
,
055005
(
2017
).
32.
M. T.
Rose
,
R. D.
Rasband
,
K. L.
Gee
, and
S. D.
Sommerfeldt
, “
Comparison of multi-microphone probes and estimation methods for pressure-based acoustic intensity
,”
Proc. Mtgs. Acoust.
26
,
030004
(
2016
).
You do not currently have access to this content.