Dysfunction of the velopharyngeal valve in the human airway causes speech disorders because there is no separation between the oral and nasal cavities during normal oral speech. The speech literature hypothesizes that undesired sound is formed by turbulent flow in the nasal cavity in cases of small velopharyngeal openings. The aim is to determine the flow behavior and the sound-generating mechanism in the vocal tract using computational fluid dynamics in two patient-specific models with small and large velopharyngeal openings and contrast it with cases of complete velopharyngeal closure. The geometry for the models was reconstructed from computed tomography scans that were taken while the patients were sustaining a sibilant sound. The results for the turbulence are correlated with the broadband acoustic models of Proudman and Curle. The models show that turbulence in the vocal tract increases downstream of a constriction and that sound may be generated from it. Furthermore, most of the sound due to turbulence in the nasal cavity is governed by a dipole source where turbulence interacts with the nasal cavity walls. The generated sound power by turbulence itself in the nasal cavity (the quadrupole source) is two orders of magnitude less than the dipole source.

1.
Bailly
,
C.
, and
Juve
,
D.
(
1999
). “
A stochastic approach to compute subsonic noise using linearized Euler's equations
,” AIAA, 99-1872.
2.
Baken
,
R. J.
, and
Orlikoff
,
R. F.
(
2000
).
Clinical Measurement of Speech and Voice
(
Cengage Learning
,
Boston
).
3.
Bechara
,
W.
,
Lafon
,
P.
,
Bailly
,
C.
, and
Candel
,
S.
(
1994
). “
Application of a κ-ε turbulence model to the prediction for simple and coaxial free jets
,”
J. Acoust. Soc. Am.
97
,
3518
3531
.
4.
Curle
,
N.
(
1955
). “
The influence of solid boundaries upon aerodynamic sound
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
231
,
505
514
.
5.
Hixon
,
T. J.
,
Weismer
,
G.
, and
Hoit
,
J. D.
(
2014
).
Preclinical Speech Science: Anatomy, Physiology, Acoustics, Perception
, 2nd ed. (
Plural
,
Austin
).
6.
Joskowicz
,
L.
,
Cohen
,
D.
,
Caplan
,
N.
, and
Sosna
,
J.
(
2019
). “
Inter-observer variability of manual contour delineation of structures in CT
,”
Eur. Radiol.
29
,
1391
1399
.
7.
Krane
,
M. H.
(
2005
). “
Aeroacoustic production of low-frequency unvoiced speech sounds
,”
J. Acoust. Soc. Am.
118
,
410
427
.
8.
Kummer
,
A. W.
(
2005
).
Simplified Nasometric Assessment Procedures (SNAP): Nasometer Test-Revised
(
Kay Elemetrics
,
Lincoln Park
, NJ).
9.
Kummer
,
A. W.
(
2011
). “
Types and causes of velopharyngeal dysfunction
,”
Semin. Speech Lang.
32
,
150
158
.
10.
Kummer
,
A. W.
,
Briggs
,
M.
, and
Lee
,
L.
(
2003
). “
The relationship between the characteristics of speech and velopharyngeal gap size
,”
Cleft Palate-Craniofacial J.
40
,
590
596
.
11.
Kummer
,
A. W.
,
Curtis
,
C.
,
Wiggs
,
M.
,
Lee
,
L.
, and
Strife
,
J. L.
(
1992
). “
Comparison of velopharyngeal gap size in patients with hypernasality, hypernasality and nasal emission, or nasal turbulence (rustle) as the primary speech characteristic
,”
Cleft Palate-Craniofacial J.
29
,
152
156
.
12.
Lighthill
,
M. J.
(
1952
). “
On sound generated aerodynamically. I. General theory
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
211
,
564
587
.
13.
Lighthill
,
M. J.
(
1954
). “
On sound generated aerodynamically II Turbulence as a source of sound
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
222
,
1
32
.
14.
MacKay
,
I. R.
, and
Kummer
,
A. W.
(
2005
). The MacKay-Kummer SNAP Test-R Simplified Nasometric Assessment Procedures, revised 2005, Kay Elemetrics, Instruction Manual Nasometer Model 6450.
15.
Menter
,
F. R.
(
1994
). “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
.
16.
Parker
,
S. E.
,
Mai
,
C. T.
,
Canfield
,
M. A.
,
Rickard
,
R.
,
Wang
,
Y.
,
Meyer
,
R. E.
,
Anderson
,
P.
,
Mason
,
C. A.
,
Collins
,
J. S.
,
Kirby
,
R. S.
,
Correa
,
A.
, and
National Birth Defects Prevention Network
(
2010
). “
Updated national birth prevalence estimates for selected birth defects in the United States, 2004–2006
,”
Birth Defects Res. Part A Clin. Mol. Teratol.
88
,
1008
1016
.
17.
Peterson-Falzone
,
S. J.
,
Trost-Cardamone
,
J.
,
Karnell
,
M. P.
, and
Hardin-Jones
,
M. A.
(
2016
).
The Clinician's Guide to Treating Cleft Palate Speech-E-Book
(
Elsevier Health Sciences
,
Amsterdam
).
18.
Proudman
,
I.
(
1952
). “
The generation of noise by isotropic turbulence
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
214
,
119
132
.
19.
Richardson
,
L. F.
(
1911
). “
The approximate arithmetical solution by finite differences of physical problems involving differential equations
,”
Philos. Trans. R. Soc. London Ser. A
210
,
307
357
.
20.
Saunders
,
N. C.
,
Hartley
,
B. E. J.
,
Sell
,
D.
, and
Sommerlad
,
B.
(
2004
). “
Velopharyngeal insufficiency following adenoidectomy
,”
Clin. Otolaryngol. Allied Sci.
29
,
686
688
.
21.
Sell
,
D.
,
Ma
,
L.
,
James
,
D.
,
Mars
,
M.
, and
Sheriff
,
M.
(
2002
). “
A pilot study of the effects of transpalatal maxillary advancement on velopharyngeal closure in cleft palate patients
,”
J. Cranio-Maxillofacial Surg.
30
,
349
354
.
22.
Shadle
,
C. H.
(
1991
). “
The effect of geometry on source mechanisms of fricative consonants
,”
J. Phonet.
19
,
409
424
.
23.
Subtelny
,
J. D.
, and
Oya
,
N.
(
1972
). “
Cineradiographic study of sibilants
,”
Folia Phoniatr. Logop.
24
,
30
50
.
24.
Witzel
,
M. A.
, and
Munro
,
I. R.
(
1977
). “
Velopharyngeal insufficiency after maxillary advancement
,”
Cleft Palate J.
14
,
176
180
.
You do not currently have access to this content.