This paper derives expressions for the sound pressure due to free-space resilient and rigid strips in cylindrical coordinates. A method is derived for improving the convergence and reducing the error of the expansions for radii less than the one-sided strip width. Low-frequency approximations are also derived, which simplify calculation at low frequencies, and expansions for the far-field responses are derived. The results are verified by comparison with direct numerical solutions.

1.
C. J.
Drost
, “
Near and farfield of strip-shaped acoustic radiators
,”
J. Acoust. Soc. Am.
65
,
565
572
(
1979
).
2.
T. J.
Mellow
and
L.
Kärkkäinen
, “
On the sound fields of infinitely long strips
,”
J. Acoust. Soc. Am.
130
,
153
167
(
2011
).
3.
P.
Baxandall
, in
Loudspeaker and Headphone Handbook
, 3rd ed., edited by
J.
Borwick
(
Focal
, Linacre House, Jordan Hill, Oxford,
2001
), pp.
108
195
.
4.
P. M.
Morse
and
H.
Feshbach
,
Methods of Theoretical Physics, Part II
(
McGraw-Hill
,
Boston, MA
,
1953
), pp.
1423
1425
.
5.
M. C.
Junger
and
D.
Feit
,
Sound, Structures and Their Interaction
(
MIT Press
,
Cambridge, MA
,
1972
), pp.
135
139
.
6.
K.
Michishita
,
K.
Sakagami
,
M.
Morimoto
, and
U. P.
Svensson
, “
Sound radiation from an unbaffled elastic plate strip of infinite length
,”
Appl. Acoust.
61
,
45
63
(
2000
).
7.
A. R.
Selfridge
,
G. S.
Kino
, and
B. T.
Khuri-Yakub
, “
A theory for the radiation pattern of a narrow-strip acoustic transducer
,”
Appl. Phys. Lett.
37
,
35
36
(
1980
).
8.
W. K.
Blake
, “
The acoustic radiation from unbaffled strips with application to a class of radiating panels
,”
J. Sound Vib.
39
,
77
103
(
1975
).
9.
P. J. T.
Filippi
, “
Sound radiation by baffled plates and related boundary integral equations
,”
J. Sound Vib.
100
,
69
81
(
1985
).
10.
D.
Habault
and
P. J. T.
Filippi
, “
Light fluid approximation for sound radiation and diffraction by thin elastic plates
,”
J. Sound Vib.
213
,
333
374
(
1998
).
11.
P.-O.
Mattei
, “
Sound radiation by baffled and constrained plates
,”
J. Sound Vib.
179
,
63
77
(
1995
).
12.
S. M.
Kirkup
, “
Computational solution of the acoustic field surrounding a baffled panel by the Rayleigh integral method
,”
Appl. Math. Model.
18
,
403
407
(
1994
).
13.
J. P.
Arenas
, “
Numerical computation of the sound radiation from a planar baffled vibrating surface
,”
J. Comput. Acoust.
16
,
321
341
(
2008
).
14.
M. A.
Poletti
, “
Spherical expansions of sound radiation from resilient and rigid disks with reduced error
,”
J. Acoust. Soc. Am.
144
,
1180
1189
(
2018
).
15.
L. L.
Beranek
and
T. J.
Mellow
,
Acoustics: Sound Fields and Transducers
, 1st ed. (
Elsevier
,
Oxford, UK
,
2012
), pp.
535
629
.
16.
E. G.
Williams
,
Fourier Acoustics
(
Academic
,
San Diego, CA
,
1999
), pp.
115
148
, 251–295.
17.
A. P.
Prudnikov
,
Y. A.
Brychkov
, and
O. I.
Marichev
,
Integrals and Series, Volume 2: Special Functions
(
Gordon and Breach
,
New York
,
1986
), p.
37
.
18.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Tables of Integrals, Series, and Products
, 6th ed. (
Academic
,
San Deigo
,
2000
), p.
910
.
19.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables
(
National Bureau of Standards
, Washington, DC,
1972
), p.
360
.
20.
T.
Mellow
On the sound field of a resilient disk in free space
,”
J. Acoust. Soc. Am.
123
,
1880
1891
(
2008
).
You do not currently have access to this content.