Active noise cancelling (ANC) headphones have seen significant commercial success and a number of control strategies have been proposed, including feedforward, feedback, and hybrid configurations, using both analogue and digital implementations. Irrespective of the configuration or implementation approach, the strategies proposed in the open-literature have focused on implementations where the control system for each ear of the headphones operates independently. In this paper, a multi-reference ANC strategy is proposed and investigated for noise cancelling headphones. As with standard feedforward ANC headphones, the system utilises a single error microphone and single reference microphone on each cup; however, in the proposed configuration, the left and right reference microphones are used to achieve control at both the left and right ear cups. The performance of this controller design is compared to a standard single reference feedforward controller implementation under a variety of different sound field conditions. Although the proposed strategy requires an increased computational demand, it is shown that there is a significant control advantage for noise sources originating from the side of the user, whilst the performance for front and rear sources is maintained.

1.
S.
Elliott
,
P.
Nelson
,
I.
Stothers
, and
C.
Boucher
, “
In-flight experiments on the active control of propeller-induced cabin noise
,”
J. Sound Vib.
140
(
2
),
219
238
(
1990
).
2.
S.
Elliott
,
I.
Stothers
,
P.
Nelson
,
A.
McDonald
,
D.
Quinn
, and
T.
Saunders
, “
The active control of engine noise inside cars
,” in
INTER-NOISE and NOISE-CON Congress and Conference Proceedings
, Avignon, France (August 30–September 1,
1988
), pp.
987
990
.
3.
T. J.
Sutton
,
S. J.
Elliott
,
A. M.
McDonald
, and
T. J.
Saunders
, “
Active control of road noise inside vehicles
,”
Noise Control Eng. J.
42
(
4
),
137
147
(
1994
).
4.
J.
Cheer
and
S. J.
Elliott
, “
Multichannel control systems for the attenuation of interior road noise in vehicles
,”
Mech. Syst. Signal Process.
60
,
753
769
(
2015
).
5.
J.
Cheer
,
S. J.
Elliott
,
E.
Oh
, and
J.
Jeong
, “
Application of the remote microphone method to active noise control in a mobile phone
,”
J. Acoust. Soc. Am.
143
(
4
),
2142
2151
(
2018
).
6.
J.
Cheer
and
S. J.
Elliott
, “
Active noise control of a diesel generator in a luxury yacht
,”
Appl. Acoust.
105
,
209
214
(
2016
).
7.
E. D.
Simshauser
and
M. E.
Hawley
, “
The noise-cancelling headset—An active ear defender
,”
J. Acoust. Soc. Am.
27
(
1
),
207
(
1955
).
8.
R.
Sapiejewski
and
M. J.
Monahan
, “
Headset noise reducing
,” U.S. patent, 6,597,792 (
2003
).
9.
R.
Sapiejewski
, “
In-the-ear noise reduction headphones
,” U.S. patent 6,683,965 (
2004
).
10.
S. M.
Kuo
,
S.
Mitra
, and
W.-S.
Gan
, “
Active noise control system for headphone applications
,”
IEEE Trans. Control Syst. Technol.
14
(
2
),
331
335
(
2006
).
11.
W. S.
Gan
,
S.
Mitra
, and
S. M.
Kuo
, “
Adaptive feedback active noise control headset: Implementation, evaluation and its extensions
,”
IEEE Trans. Consumer Electr.
51
(
3
),
975
982
(
2005
).
12.
M. R.
Bai
,
W.
Pan
, and
H.
Chen
, “
Active feedforward noise control and signal tracking of headsets: Electroacoustic analysis and system implementation
,”
J. Acoust. Soc. Am.
143
(
3
),
1613
1622
(
2018
).
13.
W. F.
Meeker
, “
Component characteristics for an active ear defender
,”
J. Acoust. Soc. Am.
29
(
11
),
1252
(
1957
).
14.
M.
Bai
and
D.
Lee
, “
Implementation of an active headset by using the h-∞ robust control theory
,”
J. Acoust. Soc. Am.
102
(
4
),
2184
2190
(
1997
).
15.
B.
Rafaely
, “
Active noise reducing headset-an overview
,” in
INTER-NOISE and NOISE-CON Congress and Conference Proceedings
, The Hague, the Netherlands (August 27–30,
2001
), pp.
2144
2153
.
16.
L.
Zhang
,
L.
Wu
, and
X.
Qiu
, “
An intuitive approach for feedback active noise controller design
,”
Appl. Acoust.
74
(
1
),
160
168
(
2013
).
17.
D.
Morgan
, “
An analysis of multiple correlation cancellation loops with a filter in the auxiliary path
,”
IEEE Trans. Acoust. Speech Signal Process.
28
(
4
),
454
467
(
1980
).
18.
A. J.
Brammer
,
G. J.
Pan
, and
R. B.
Crabtree
, “
Adaptive feedforward active noise reduction headset for low-frequency noise
,” in
INTER-NOISE and NOISE-CON Congress and Conference Proceedings
, Budapest, Hungary (August 25–27,
1997
), pp.
399
406
.
19.
D. A.
Cartes
,
L. R.
Ray
, and
R. D.
Collier
, “
Experimental evaluation of leaky least-mean-square algorithms for active noise reduction in communication headsets
,”
J. Acoust. Soc. Am.
111
(
4
),
1758
1771
(
2002
).
20.
L.
Zhang
and
X.
Qiu
, “
Causality study on a feedforward active noise control headset with different noise coming directions in free field
,”
Appl. Acoust.
80
,
36
44
(
2014
).
21.
B.
Rafaely
and
M.
Jones
, “
Combined feedback–feedforward active noise-reducing headset—The effect of the acoustics on broadband performance
,”
J. Acoust. Soc. Am.
112
(
3
),
981
989
(
2002
).
22.
L. R.
Ray
,
J. A.
Solbeck
,
A. D.
Streeter
, and
R. D.
Collier
, “
Hybrid feedforward-feedback active noise reduction for hearing protection and communication
,”
J. Acoust. Soc. Am.
120
(
4
),
2026
2036
(
2006
).
23.
S.
Elliott
,
I.
Stothers
, and
P.
Nelson
, “
A multiple error lms algorithm and its application to the active control of sound and vibration
,”
IEEE Trans. Acoust. Speech Signal Process.
35
(
10
),
1423
1434
(
1987
).
24.
J.
Minkoff
, “
The operation of multichannel feedforward adaptive systems
,”
IEEE Trans. Signal Process.
45
(
12
),
2993
3005
(
1997
).
25.
S.-H.
Oh
,
H.-s.
Kim
, and
Y.
Park
, “
Active control of road booming noise in automotive interiors
,”
J. Acoust. Soc. Am.
111
(
1
),
180
188
(
2002
).
26.
W.
Jung
,
S. J.
Elliott
, and
J.
Cheer
, “
Local active control of road noise inside a vehicle
,”
Mech. Syst. Signal Process.
121
,
144
157
(
2019
).
27.
S. J.
Elliott
, “
Optimal controllers and adaptive controllers for multichannel feedforward control of stochastic disturbances
,”
IEEE Trans. Signal Process.
48
(
4
),
1053
1060
(
2000
).
28.
M.
Bai
and
S.
Elliott
, “
Preconditioning multichannel adaptive filtering algorithms using EVD- and SVD-based signal prewhitening and system decoupling
,”
J. Sound Vib.
270
(
4–5
),
639
655
(
2004
).
29.
B.
Rafaely
and
S. J.
Elliot
, “
A computationally efficient frequency-domain lms algorithm with constraints on the adaptive filter
,”
IEEE Trans. Signal Process.
48
(
6
),
1649
1655
(
2000
).
30.
D. R.
Morgan
and
J. C.
Thi
, “
A delayless subband adaptive filter architecture
,”
IEEE Trans. Signal Process.
43
(
8
),
1819
1830
(
1995
).
31.
J.
Cheer
,
S.
Daley
,
J.
Cheer
, and
S.
Daley
, “
An investigation of delayless subband adaptive filtering for multi-input multi-output active noise control applications
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
25
(
2
),
359
373
(
2017
).
32.
S. J.
Elliott
,
Signal Processing for Active Control
(
Academic Press
,
London
,
2001
).
33.
S.
Haykin
and
B.
Widrow
,
Least-Mean-Square Adaptive Filters
(
John Wiley & Sons
,
New York
,
2003
), Vol. 31.
You do not currently have access to this content.