Although the auditory brainstem response (ABR) is known to be an onset response, the specific relationship between stimulus onset properties and the resulting ABR is not well understood. In this study, the effects of stimulus onset on dolphin ABR were examined by measuring ABRs in six bottlenose dolphins while systematically manipulating rise time and plateau sound pressure of cosine-enveloped noise bursts. Noise bursts were spectrally “pink” with frequency content from 10 to 160 kHz, rise times from 32 μs to 4 ms, and plateau sound pressure levels from 102 to 138 dB re 1 μPa. Envelope rise time and plateau sound pressure alone were found to be poor predictors for ABR peak amplitudes and latencies. Peak amplitudes were well described by the envelope sound pressure at the end of a 260-μs window; however, best-fits to the data across ABR peaks were obtained when the window start time was allowed to vary. Peak latencies were best described by the maximum value of the second derivative of the pressure envelope. These results are consistent with single-unit and nearfield response data for terrestrial mammals and indicate that stimuli with rise times greater than 260 μs are non-optimal with respect to maximizing ABR amplitudes.

You do not currently have access to this content.