The radiation resistance matrix allows for the calculation of structurally radiated sound power using a series of measured structural responses. Currently, estimating the radiation resistance matrix requires precise modelling of the structure which, for practical structures, can lead to estimation errors. This paper presents two methods for identifying the radiation resistance matrix for a structure using measurable structural and acoustic responses and the solution of an inverse problem. Although well suited to practical, complex structures, to allow the accuracy of the proposed methods of identifying the radiation resistance matrix to be reliably validated, they are compared with the theoretical radiation resistance matrix for a flat plate in an infinite baffle. It is shown through a simulation-based study that the accuracy of the proposed identification methods depends on the number of structural and acoustic sensors and structural forces used in the identification process. The proposed identification methods are then implemented experimentally to identify the radiation resistance matrix for a flat plate. The results demonstrate that an accurate estimate of the sound power can be obtained using the experimentally identified radiation resistance matrix using the two proposed methods, and the limits on the two methods are discussed.

1.
A.
Roure
and
A.
Albarrazin
, “
The remote microphone technique for the active noise cotnrol
,” in
Proceedings Active 99: International Symposium on Active Control of Sound and Vibration
, Fort Lauderdale, FL (December 2–4, 1999), pp.
1233
1244
.
2.
S.
Elliott
and
A.
David
, “
A virtual microphone arrangement for local active sound control
,” in
Proceedings of MoVic, International Conference on Motion and Vibration Control
, Yokohama, Japan (The Society, Tokyo,
1992
), pp.
1027
1031
.
3.
D.
Moreau
,
B.
Cazzolato
,
B.
Zander
, and
C.
Petersen
, “
A review of virtual sensing algorithms for active noise control
,”
Algorithms
1
,
69
99
(
2008
).
4.
J.
Garcis-Bonito
,
S.
Elliott
, and
C.
Boucher
, “
Generation of zones of quiet using a virtual microphone arrangement
,”
J. Acoust. Soc. Am.
101
(
2
),
3498
3516
(
1997
).
5.
S.
Elliott
and
J.
Cheer
, “
Modelling local active sound control with remote sensors in spatially random pressure fields
,”
J. Acoust. Soc. Am.
137
(
4
),
1936
1946
(
2015
).
6.
F.
Fahy
and
P.
Gardonio
,
Sound and Structural Vibration
(
Academic Press Oxford
,
Oxford, UK
,
2007
).
7.
W. T.
Baumann
,
F.-S.
Ho
, and
H. H.
Robertshaw
, “
Active structural acoustic control of broadband disturbances
,”
J. Acoust. Soc. Am.
92
(
4
),
1998
2005
(
1992
).
8.
J.
Cheer
and
S.
Daley
, “
Active structural acoustic control using the remote sensor method
,”
J. Phys.: Conf. Ser.
744
(
1
),
012184
(
2016
).
9.
D. R.
Hendricks
,
W. R.
Johnson
,
S. D.
Sommerfeldt
, and
J. D.
Blotter
, “
Experimental active structural acoustic control of simply supported plates using a weighted sum of spatial gradients
,”
J. Acoust. Soc. Am.
136
(
5
),
2598
2608
(
2014
).
10.
P.
Aslani
,
S. D.
Sommerfeldt
, and
J. D.
Blotter
, “
Active control of simply supported cylindrical shells using the weighted sum of spatial gradients control metric
,”
J. Acoust. Soc. Am.
143
(
1
),
271
280
(
2018
).
11.
S.
Elliott
and
M. E.
Johnson
, “
Radiation modes and the active control of sound power
,”
J. Acoust. Soc. Am.
94
(
4
),
2194
2204
(
1993
).
12.
J. B.
Fahnline
and
G. H.
Koopmann
, “
A lumped parameter model for the acoustic power output from a vibrating structure
,”
J. Acoust. Soc. Am.
100
(
6
),
3539
3547
(
1996
).
13.
J. B.
Fahnline
and
G. H.
Koopmann
, “
Numerical implementation of the lumped parameter model for the acoustic power output of a vibrating structure
,”
J. Acoust. Soc. Am.
102
(
1
),
179
192
(
1997
).
14.
G. H.
Koopmann
and
J. B.
Fahnline
,
Designing Quiet Structures: A Sound Power Minimization Approach
(
Academic Press
,
London
,
1997
).
15.
A.
Berkhoff
, “
Broadband radiation modes: Estimation and active control
,”
J. Acoust. Soc. Am.
111
(
3
),
1295
1305
(
2002
).
16.
P.
Gardonio
,
Y. S.
Lee
,
S.
Elliott
, and
S.
Debost
, “
Active control of sound transmission through a panel with a matched PVDF sensor actuator pair
,” in
Proceedings Active 99: International Symposium on Active Control of Sound and Vibration
, Fort Lauderdale, FL (December 2–4,
1999
), pp.
341
354
.
17.
K.
Henrioulle
and
P.
Sas
, “
Experimental validation of a collocated PVDF volume velocity sensor/actuator pair
,”
J. Sound Vib.
265
,
489
506
(
2003
).
18.
L. E.
Kinsler
,
A. R.
Frey
,
J. V.
Sanders
, and
A. B.
Coppens
,
Fundamentals of Acoustics
(
John Wiley and Sons
,
New York
,
1999
).
19.
O.
Heuss
, “
Identification of power transfer matrices for active structural acoustic contorl
,” in
Proceedings of the Twentieth International Congress on Sound and Vibration
, Bangkok, Thailand (July 7–11,
2013
).
20.
R.
Pintelon
and
J.
Schoukens
,
System Identification: A Frequency Domain Approach
(
John Wiley and Sons
,
New York
,
2012
).
You do not currently have access to this content.