The ability to discriminate irregular from regular amplitude modulation was assessed using the “envelope regularity discrimination” test. The amount of irregularity was parametrically varied and quantified by an “irregularity index.” Normative data were gathered for young subjects with normal audiometric thresholds. Parameters varied were the carrier and modulation frequencies, fc and fm, and the baseline modulation index, m. All tests were performed using a background threshold-equalizing noise. The main findings were (1) using fc = 4000 Hz, fm = 8 Hz, and m = 0.3, performance improved over the first two threshold runs and then remained roughly stable, and there was a high correlation between thresholds obtained at 80 dB sound pressure level (SPL) and at 20 dB sensation level; (2) using fm = 8 Hz and m = 0.3 with a level of 80 dB SPL, thresholds did not vary significantly across fc = 1000, 2000, and 4000 Hz; (3) using fm = 8 Hz and fc = 4000 Hz with a level of 80 dB SPL, thresholds did not vary significantly for m from 0.2 to 0.5; and (4) using m = 0.3 and fc = 4000 Hz with a level of 80 dB SPL, thresholds improved with increasing fm from 2 to 16 Hz. For all conditions, there was substantial individual variability, probably resulting from differences in “processing efficiency.”

1.
Bacon
,
S. P.
, and
Gleitman
,
R. M.
(
1992
). “
Modulation detection in subjects with relatively flat hearing losses
,”
J. Speech Hear. Res.
35
,
642
653
.
2.
Bacon
,
S. P.
, and
Viemeister
,
N. F.
(
1985
). “
Temporal modulation transfer functions in normal-hearing and hearing-impaired subjects
,”
Audiology
24
,
117
134
.
3.
Bharadwaj
,
H. M.
,
Masud
,
S.
,
Mehraei
,
G.
,
Verhulst
,
S.
, and
Shinn-Cunningham
,
B. G.
(
2015
). “
Individual differences reveal correlates of hidden hearing deficits
,”
J. Neurosci.
35
,
2161
2172
.
4.
Borg
,
E.
,
Canlon
,
B.
, and
Engström
,
B.
(
1995
). “
Noise-induced hearing loss—Literature review and experiments in rabbits. Morphological and electrophysiological features, exposure parameters and temporal factors, variability and interactions
,”
Scand. Audiol.
24
,
Suppl. 40
,
1
147
.
5.
Bramhall
,
N. F.
,
Konrad-Martin
,
D.
,
McMillan
,
G. P.
, and
Griest
,
S. E.
(
2017
). “
Auditory brainstem response altered in humans with noise exposure despite normal outer hair cell function
,”
Ear Hear.
38
,
e1
e12
.
6.
British Society of Audiology
(
2011
).
Pure-Tone Air-Conduction and Bone-Conduction Threshold Audiometry with and without Masking: Recommended Procedure
(
British Society of Audiology
,
Reading, UK
).
7.
Burns
,
E. M.
, and
Viemeister
,
N. F.
(
1976
). “
Nonspectral pitch
,”
J. Acoust. Soc. Am.
60
,
863
869
.
8.
Dobie
,
R. A.
, and
Humes
,
L. E.
(
2017
). “
Commentary on the regulatory implications of noise-induced cochlear neuropathy
,”
Int. J. Audiol.
56
,
74
78
.
9.
Ernst
,
S. M.
, and
Moore
,
B. C. J.
(
2012
). “
The role of time and place cues in the detection of frequency modulation by hearing-impaired listeners
,”
J. Acoust. Soc. Am.
131
,
4722
4731
.
10.
Füllgrabe
,
C.
,
Meyer
,
B.
, and
Lorenzi
,
C.
(
2003
). “
Effect of cochlear damage on the detection of complex temporal envelopes
,”
Hear. Res.
178
,
35
43
.
11.
Füllgrabe
,
C.
,
Moore
,
B. C. J.
, and
Stone
,
M. A.
(
2015
). “
Age-group differences in speech identification despite matched audiometrically normal hearing: Contributions from auditory temporal processing and cognition
,”
Front. Aging Neurosci.
6
, 347,
1
25
.
12.
Furman
,
A. C.
,
Kujawa
,
S. G.
, and
Liberman
,
M. C.
(
2013
). “
Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates
,”
J. Neurophysiol.
110
,
577
586
.
13.
Glasberg
,
B. R.
, and
Moore
,
B. C. J.
(
1990
). “
Derivation of auditory filter shapes from notched-noise data
,”
Hear. Res.
47
,
103
138
.
14.
Grose
,
J. H.
,
Buss
,
E.
, and
Hall
,
J. W.
, III
(
2017
). “
Loud music exposure and cochlear synaptopathy in young adults: Isolated auditory brainstem response effects but no perceptual consequences
,”
Trends Hear.
21
,
1
18
.
15.
Guest
,
H.
,
Dewey
,
R. S.
,
Plack
,
C. J.
,
Couth
,
S.
,
Prendergast
,
G.
,
Bakay
,
W.
, and
Hall
,
D. A.
(
2018a
). “
The noise exposure structured interview (NESI): An instrument for the comprehensive estimation of lifetime noise exposure
,”
Trends Hear.
22
,
1
20
.
16.
Guest
,
H.
,
Munro
,
K. J.
,
Prendergast
,
G.
,
Millman
,
R. E.
, and
Plack
,
C. J.
(
2018b
). “
Impaired speech perception in noise with a normal audiogram: No evidence for cochlear synaptopathy and no relation to lifetime noise exposure
,”
Hear. Res.
364
,
142
151
.
17.
Jerger
,
J.
(
1962
). “
The SISI test
,”
Int. Audiol.
1
,
246
247
.
18.
Kujawa
,
S. G.
, and
Liberman
,
M. C.
(
2009
). “
Adding insult to injury: Cochlear nerve degeneration after ‘temporary’ noise-induced hearing loss
,”
J. Neurosci.
29
,
14077
14085
.
19.
Kujawa
,
S. G.
, and
Liberman
,
M. C.
(
2015
). “
Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss
,”
Hear. Res.
330
,
191
199
.
20.
Lemanska
,
J.
,
Skrodzka
,
E.
, and
Sek
,
A.
(
2002
). “
Discrimination of the amplitude modulation rate
,”
Arch. Acoust.
27
,
3
22
.
21.
Liberman
,
M. C.
,
Epstein
,
M. J.
,
Cleveland
,
S. S.
,
Wang
,
H.
, and
Maison
,
S. F.
(
2016
). “
Toward a differential diagnosis of hidden hearing loss in humans
,”
PLoS One
11
,
e0162726
.
22.
Liberman
,
M. C.
, and
Kujawa
,
S. G.
(
2017
). “
Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms
,”
Hear. Res.
349
,
138
147
.
23.
McFadden
,
D.
(
1986
). “
The curious half octave shift: Evidence for a basalward migration of the travelling-wave envelope with increasing intensity
,” in
Basic and Applied Aspects of Noise-Induced Hearing Loss
, edited by
R. J.
Salvi
,
D.
Henderson
,
R. P.
Hamernik
, and
V.
Colletti
(
Plenum
,
New York
), pp.
295
312
.
24.
Moore
,
B. C. J.
(
2014
).
Auditory Processing of Temporal Fine Structure: Effects of Age and Hearing Loss
(
World Scientific
,
Singapore
), pp.
1
182
.
25.
Moore
,
B. C. J.
,
Alcántara
,
J. I.
, and
Glasberg
,
B. R.
(
2002
). “
Behavioural measurement of level-dependent shifts in the vibration pattern on the basilar membrane
,”
Hear. Res.
163
,
101
110
.
26.
Moore
,
B. C. J.
, and
Glasberg
,
B. R.
(
1993
). “
Simulation of the effects of loudness recruitment and threshold elevation on the intelligibility of speech in quiet and in a background of speech
,”
J. Acoust. Soc. Am.
94
,
2050
2062
.
27.
Moore
,
B. C. J.
,
Huss
,
M.
,
Vickers
,
D. A.
,
Glasberg
,
B. R.
, and
Alcántara
,
J. I.
(
2000
). “
A test for the diagnosis of dead regions in the cochlea
,”
Br. J. Audiol.
34
,
205
224
.
28.
Moore
,
B. C. J.
,
Shailer
,
M. J.
, and
Schooneveldt
,
G. P.
(
1992
). “
Temporal modulation transfer functions for band-limited noise in subjects with cochlear hearing loss
,”
Br. J. Audiol.
26
,
229
237
.
29.
Moore
,
B. C. J.
,
Wojtczak
,
M.
, and
Vickers
,
D. A.
(
1996
). “
Effect of loudness recruitment on the perception of amplitude modulation
,”
J. Acoust. Soc. Am.
100
,
481
489
.
30.
Oxenham
,
A. J.
(
2016
). “
Predicting the perceptual consequences of hidden hearing loss
,”
Trends Hear.
20
,
1
6
.
31.
Patterson
,
R. D.
, and
Johnson-Davies
,
D.
(
1977
). “
Detection of a change in the pitch of AM noise
,” in
Psychophysics and Physiology of Hearing
, edited by
E. F.
Evans
and
J. P.
Wilson
(
Academic
,
London
), pp.
363
371
.
32.
Plomp
,
R.
(
1983
). “
The role of modulation in hearing
,” in
Hearing—Physiological Bases and Psychophysics
, edited by
R.
Klinke
and
R.
Hartmann
(
Springer
,
Berlin
), pp.
270
276
.
33.
Prendergast
,
G.
,
Guest
,
H.
,
Munro
,
K. J.
,
Kluk
,
K.
,
Leger
,
A.
,
Hall
,
D. A.
,
Heinz
,
M. G.
, and
Plack
,
C. J.
(
2017a
). “
Effects of noise exposure on young adults with normal audiograms I: Electrophysiology
,”
Hear. Res.
344
,
68
81
.
34.
Prendergast
,
G.
,
Millman
,
R. E.
,
Guest
,
H.
,
Munro
,
K. J.
,
Kluk
,
K.
,
Dewey
,
R. S.
,
Hall
,
D. A.
,
Heinz
,
M. G.
, and
Plack
,
C. J.
(
2017b
). “
Effects of noise exposure on young adults with normal audiograms II: Behavioral measures
,”
Hear. Res.
356
,
74
86
.
35.
Robles
,
L.
, and
Ruggero
,
M. A.
(
2001
). “
Mechanics of the mammalian cochlea
,”
Physiol. Rev.
81
,
1305
1352
.
36.
Ruggles
,
D.
,
Bharadwaj
,
H.
, and
Shinn-Cunningham
,
B. G.
(
2012
). “
Why middle-aged listeners have trouble hearing in everyday settings
,”
Curr. Biol.
22
,
1417
1422
.
37.
Schaette
,
R.
, and
McAlpine
,
D.
(
2011
). “
Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model
,”
J. Neurosci.
31
,
13452
13457
.
38.
Schlittenlacher
,
J.
, and
Moore
,
B. C. J.
(
2016
). “
Discrimination of amplitude-modulation depth by subjects with normal and impaired hearing
,”
J. Acoust. Soc. Am.
140
,
3487
3495
.
39.
Sergeyenko
,
Y.
,
Lall
,
K.
,
Liberman
,
M. C.
, and
Kujawa
,
S. G.
(
2013
). “
Age-related cochlear synaptopathy: An early-onset contributor to auditory functional decline
,”
J. Neurosci.
33
,
13686
13694
.
40.
Shannon
,
R. V.
,
Zeng
,
F.-G.
,
Kamath
,
V.
,
Wygonski
,
J.
, and
Ekelid
,
M.
(
1995
). “
Speech recognition with primarily temporal cues
,”
Science
270
,
303
304
.
41.
Shaw
,
E. A. G.
(
1974
). “
Transformation of sound pressure level from the free field to the eardrum in the horizontal plane
,”
J. Acoust. Soc. Am.
56
,
1848
1861
.
42.
Sheft
,
S.
, and
Yost
,
W. A.
(
1990
). “
Temporal integration in amplitude modulation detection
,”
J. Acoust. Soc. Am.
88
,
796
805
.
43.
Stone
,
M. A.
, and
Moore
,
B. C. J.
(
2014
). “
Amplitude-modulation detection in recreational-noise-exposed humans with near-normal hearing thresholds and its medium-term progression
,”
Hear. Res.
317
,
50
62
.
44.
Stone
,
M. A.
,
Moore
,
B. C. J.
, and
Greenish
,
H.
(
2008
). “
Discrimination of envelope statistics reveals evidence of sub-clinical hearing damage in a noise-exposed population with ‘normal’ hearing thresholds
,”
Int. J. Audiol.
47
,
737
750
.
45.
Valderrama
,
J. T.
,
Beach
,
E. F.
,
Yeend
,
I.
,
Sharma
,
M.
,
Van Dun
,
B.
, and
Dillon
,
H.
(
2018
). “
Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility
,”
Hear. Res.
365
,
36
48
.
46.
Valero
,
M. D.
,
Burton
,
J. A.
,
Hauser
,
S. N.
,
Hackett
,
T. A.
,
Ramachandran
,
R.
, and
Liberman
,
M. C.
(
2017
). “
Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta)
,”
Hear. Res.
353
,
213
223
.
47.
Viana
,
L. M.
,
O'Malley
,
J. T.
,
Burgess
,
B. J.
,
Jones
,
D. D.
,
Oliveira
,
C. A.
,
Santos
,
F.
,
Merchant
,
S. N.
,
Liberman
,
L. D.
, and
Liberman
,
M. C.
(
2015
). “
Cochlear neuropathy in human presbycusis: Confocal analysis of hidden hearing loss in post-mortem tissue
,”
Hear. Res.
327
,
78
88
.
48.
Viemeister
,
N. F.
(
1979
). “
Temporal modulation transfer functions based on modulation thresholds
,”
J. Acoust. Soc. Am.
66
,
1364
1380
.
49.
Wakefield
,
G. H.
, and
Viemeister
,
N. F.
(
1990
). “
Discrimination of modulation depth of SAM noise
,”
J. Acoust. Soc. Am.
88
,
1367
1373
.
50.
Yeend
,
I.
,
Beach
,
E. F.
,
Sharma
,
M.
, and
Dillon
,
H.
(
2017
). “
The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise
,”
Hear. Res.
353
,
224
236
.
You do not currently have access to this content.