A listening experiment is presented in which subjects rated the perceived differences in terms of spaciousness and timbre between a headphone-based headtracked dummy head auralization of a sound source in different rooms and a headphone-based headtracked auralization of a spherical microphone array recording of the same scenario. The underlying auralizations were based on measured impulse responses to assure equal conditions. Rigid-sphere arrays with different amounts of microphones ranging from 50 to up to 1202 were emulated through sequential measurements, and spherical harmonics orders of up to 12 were tested. The results show that the array auralizations are partially indistinguishable from the direct dummy head auralization at a spherical harmonics order of 8 or higher if the virtual sound source is located at a lateral position. No significant reduction of the perceived differences with increasing order is observed for frontal virtual sound sources. In this case, small differences with respect to both spaciousness and timbre persist. The evaluation of lowpass-filtered stimuli shows that the perceived differences occur exclusively at higher frequencies and can therefore be attributed to spatial aliasing. The room had only a minor effect on the results.

1.
Ahrens
,
J.
(
2012
).
Analytic Methods of Sound Field Synthesis
(
Springer
,
Berlin
).
2.
Ahrens
,
J.
,
Hohnerlein
,
C.
, and
Andersson
,
C.
(
2017
). “
Auralization of acoustic spaces based on spherical microphone array recordings
,” in
Proceedings of Acoustics'17
, ASA/EAA, Boston, MA, pp.
1
4
.
3.
Alon
,
D. L.
,
Sheaffer
,
J.
, and
Rafaely
,
B.
(
2015
). “
Plane-wave decomposition with aliasing cancellation for binaural sound reproduction
,” in
139th Convention of the AES
, AES, New York, NY, p.
9449
.
4.
Anderson
,
T. W.
, and
Darling
,
D. A.
(
1954
). “
A test of goodness-of-fit
,”
J. Am. Stat. Assoc.
49
,
765
769
.
5.
Andersson
,
C.
(
2017
). “
Headphone auralization of acoustic spaces recorded with spherical microphone arrays
,” Master's thesis,
Chalmers University of Technology
,
Göteborg, Sweden
.
6.
Avni
,
A.
,
Ahrens
,
J.
,
Geier
,
M.
,
Spors
,
S.
,
Wierstorf
,
H.
, and
Rafaely
,
B.
(
2013
). “
Spatial perception of sound fields recorded by spherical microphone arrays with varying spatial resolution
,”
J. Acoust. Soc. Am.
133
(
5
),
2711
2721
.
7.
Bech
,
S.
, and
Zacharov
,
N.
(
2006
).
Perceptual Audio Evaluation—Theory, Method and Application
(
Wiley
,
Chichester, UK
).
8.
Begault
,
D. R.
,
Lee
,
A. S.
,
Wenzel
,
E. M.
, and
Anderson
,
M. R.
(
2000
). “
Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source
,” in
108th Convention of the AES
, p.
5134
.
9.
Ben-Hur
,
Z.
,
Brinkmann
,
F.
,
Sheaffer
,
J.
,
Weinzierl
,
S.
, and
Rafaely
,
B.
(
2017
). “
Spectral equalization in binaural signals represented by order-truncated spherical harmonics
,”
J. Acoust. Soc. Am.
141
(
6
),
4087
4096
.
10.
Bernschütz
,
B.
(
2013
). “
A Spherical Far Field HRIR/HRTF Compilation of the Neumann KU 100
,” in
Proceedings of AIA/DAGA
, DEGA, Meran, Italy, pp.
592
595
.
11.
Bernschütz
,
B.
(
2016
). “
Microphone arrays and sound field decomposition for dynamic binaural recording
,” Ph.D. thesis,
Technische Universität Berlin
,
Berlin, Germany
.
12.
Bernschütz
,
B.
,
Pörschmann
,
C.
,
Spors
,
S.
, and
Weinzierl
,
S.
(
2009
). “
Entwurf und Aufbau eines sphärischen Mikrofonarrays für Forschungsanwendungen in Raumakustik und Virtual Audio [text in German]
,” in
Proceedings of DAGA
, DEGA, Oldenburg, Germany, pp.
717
718
.
13.
Bernschütz
,
B.
,
Pörschmann
,
C.
,
Spors
,
S.
, and
Weinzierl
,
S.
(
2011
). “
SOFiA sound field analysis toolbox
,” in
Proceedings of the International Conference on Spatial Audio (ICSA)
.
14.
Blauert
,
J.
(
1997
).
Spatial Hearing: The Psychophysics of Human Sound Localization
(
MIT Press
,
Cambridge, MA
).
15.
Blauert
,
J.
, and
Rabenstein
,
R.
(
2010
). “
Loudspeaker methods for surround sound
,” in
Proceedings of the 57th Open Seminar on Acoustics (OSA)
, Gliwice, Poland, pp.
1
4
.
16.
Bortz
,
J.
(
2006
).
Statistik
, 6th ed. (
Springer
,
Berlin
).
17.
Duraiswami
,
R.
,
Zotkin
,
D. N.
,
Li
,
Z.
,
Grassi
,
E.
,
Gumerov
,
N. A.
, and
Davis
,
L. S.
(
2005
). “
High order spatial audio capture and its binaural head-tracked playback over headphones with HRTF cues
,” in
119th Convention of the AES
, p.
6540
.
18.
Geier
,
M.
, and
Spors
,
S.
(
2010
). “
Conducting psychoacoustic experiments with the SoundScape Renderer
,” in
9. ITG Fachtagung Sprachkommunikation
, Bochum, Germany, pp.
1
4
.
19.
Geier
,
M.
,
Spors
,
S.
, and
Ahrens
,
J.
(
2008
). “
The SoundScape Renderer: A unified spatial audio reproduction framework for arbitrary rendering methods
,” in
124th Convention of the AES
, p.
7330
, the software can be downloaded from http://spatialaudio.net/ssr/ (Last viewed 3/27/2019).
20.
Griesinger
,
D.
(
1996
). “
Spaciousness and envelopment in musical acoustics
,” in
101st Convention of the AES
, Los Angeles, CA, USA, p.
4401
.
21.
Hohnerlein
,
C.
, and
Ahrens
,
J.
(
2017
). “
Spherical microphone array processing in Python with the sound_field_analysis-py toolbox
,” in
Proceedings of DAGA
, DEGA, pp.
1
4
, the software can be downloaded from https://github.com/AppliedAcousticsChalmers/sound_field_analysis-py (Last viewed 3/27/2019).
22.
Letowski
,
T.
(
1989
). “
Sound quality assessment: Cardinal concepts
,” in
87th Convention of the AES
,
AES
,
New York
, p.
2825
.
23.
Lindau
,
A.
(
2009
). “
The perception of system latency in dynamic binaural synthesis
,” in
Proceedings of NAG/DAGA
, DEGA, Rotterdam, The Netherlands, pp.
1063
1066
.
24.
Lindau
,
A.
(
2014
). “
Binaural resynthesis of acoustical environments
,” Ph.D. thesis,
Technische Universität Berlin
,
Berlin, Germany
.
25.
Lindau
,
A.
,
Erbes
,
V.
,
Stefan Lepa
,
H.-J. M.
,
Brinkmann
,
F.
, and
Weinzierl
,
S.
(
2014
). “
A spatial audio quality inventory (SAQI)
,”
Acta Acoust. Acoust.
100
,
984
994
.
26.
McKenzie
,
T.
,
Murphy
,
D.
, and
Kearney
,
G.
(
2018
). “
Diffuse-field equalisation of binaural ambisonic rendering
,”
Appl. Sci.
8
(
10
),
1956
.
27.
Melchior
,
F.
,
Thiergart
,
O.
,
Galdo
,
G. D.
,
de Vries
,
D.
, and
Brix
,
S.
(
2009
). “
Dual radius spherical cardioid microphone arrays for binaural auralization
,” in
127th Convention of the AES
, p.
7855
.
28.
Meyer
,
J.
, and
Elko
,
G.
(
2002
). “
A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield
,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
, IEEE, Orlando, FL, pp.
1781
1784
.
29.
Neidhardt
,
A.
(
2015
). “
Untersuchungen zur räumlichen Genauigkeit bei der binauralen Auralisation von Kugelarraydaten
,” M.Sc. thesis,
Graz University of Technology
,
Graz, Austria
.
30.
Nowak
,
J.
,
Jurgeit
,
K.-P.
, and
Liebetrau
,
J.
(
2016
). “
Assessment of spherical microphone array auralizations using open-profiling of quality (OPQ)
,” in
Eighth International Conference on Quality of Multimedia Experience (QoMEX)
.
31.
Nowak
,
J.
, and
Klockgether
,
S.
(
2017
). “
Perception and prediction of apparent source width and listener envelopment in binaural spherical microphone array auralizations
,”
J. Acoust. Soc. Am.
142
(
3
),
1634
1645
.
32.
Rafaely
,
B.
(
2005
). “
Analysis and design of spherical microphone arrays
,”
IEEE Trans. Speech Audio Process.
13
(
1
),
135
143
.
33.
Rasumow
,
E.
,
Blau
,
M.
,
Doclo
,
S.
,
Hansen
,
M.
,
de Par
,
S. V.
,
Püschel
,
D.
, and
Mellert
,
V.
(
2013
). “
Least squares versus non-linear cost functions for a virtual artificial head
,” in
Proceedings of Meetings on Acoustics
, Vol.
19
, pp.
1
10
.
34.
Stade
,
P.
,
Bernschütz
,
B.
, and
Rühl
,
M.
(
2012
). “
A spatial audio impulse response compilation captured at the WDR broadcast studios
,” in
27th Tonmeistertagung—VDT International Convention
, pp.
1
17
.
35.
Williams
,
E. G.
(
1999
).
Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography
(
Academic Press
,
London
).
36.
Zaunschirm
,
M.
,
Schörkhuber
,
C.
, and
Höldrich
,
R.
(
2018
). “
Binaural rendering of ambisonic signals by head-related impulse response time alignment and a diffuseness constraint
,”
J. Acoust. Soc. Am.
143
(
6
),
3616
3627
.
37.
Zotter
,
F.
(
2009
). “
Sampling strategies for acoustic holography/holophony on the sphere
,” in
Proceedings of NAG/DAGA
, DEGA, Rotterdam, The Netherlands, pp.
1
4
.
You do not currently have access to this content.