In the field of room acoustics, it is well known that reverberation can be characterized statistically in a particular region of the time-frequency domain (after the transition time and above Schroeder's frequency). Since the 1950s, various formulas have been established, focusing on particular aspects of reverberation: exponential decay over time, correlations between frequencies, correlations between sensors at each frequency, and time-frequency distribution. In this paper, the author introduces a stochastic reverberation model, which permits us to retrieve all these well-known results within a common mathematical framework. To the best of the author's knowledge, this is the first time that such a unification work is presented. The benefits are multiple: several formulas generalizing the classical results are established that jointly characterize the spatial, temporal, and spectral properties of late reverberation.

1.
Allen
,
J. B.
, and
Berkley
,
D. A.
(
1979
). “
Image method for efficiently simulating small-room acoustics
,”
J. Acoust. Soc. Am.
65
(
4
),
943
950
.
2.
Balian
,
R.
, and
Bloch
,
C.
(
1970
). “
Distribution of eigenfrequencies for the wave equation in a finite domain: I. Three-dimensional problem with smooth boundary surface
,”
Ann. Phys.
60
(
2
),
401
447
.
3.
Baskind
,
A.
(
2003
). “
Modèles et méthodes de description spatiale de scènes sonores: Application aux enregistrements binauraux” (“Models and methods of spatial description of sound scenes: Application to binaural recordings”)
, Ph.D. thesis,
Université Pierre et Marie Curie (UPMC)
, Paris, France.
4.
Chiu
,
S. N.
,
Stoyan
,
D.
,
Kendall
,
W. S.
, and
Mecke
,
J.
(
2013
). “
Point processes I—The Poisson point process
,” in
Stochastic Geometry and Its Applications
, 3rd ed. (
Wiley
,
Hoboken, NJ
), Chap. 2.
5.
Cohen
,
L.
(
1989
). “
Time-frequency distributions-a review
,”
Proc. IEEE
77
(
7
),
941
981
.
6.
Cook
,
R. K.
,
Waterhouse
,
R. V.
,
Berendt
,
R. D.
,
Edelman
,
S.
, and
Thompson
,
M. C.
, Jr.
(
1955
). “
Measurement of correlation coefficients in reverberant sound fields
,”
J. Acoust. Soc. Am.
27
(
6
),
1072
1077
.
7.
Cremer
,
L.
,
Müller
,
H. A.
, and
Schultz
,
T. J.
(
1982
). “
Statistical room acoustics
,” in
Principles and Applications of Room Acoustics
(
Applied Science Publishers
,
London, United Kingdom
), Vol.
1
, Chap. (ii).
8.
Elko
,
G. W.
(
2001
). “
Spatial coherence functions for differential microphones in isotropic noise fields
,”
Microphone Arrays
61
85
.
9.
Jacobsen
,
F.
, and
Roisin
,
T.
(
2000
). “
The coherence of reverberant sound fields
,”
J. Acoust. Soc. Am.
108
(
1
),
204
210
.
10.
Jot
,
J.-M.
,
Cerveau
,
L.
, and
Warusfel
,
O.
(
1997
). “
Analysis and synthesis of room reverberation based on a statistical time-frequency model
,” in
AES Convention
103
(Audio Engineering Society
,
New York
), pp.
4629
4658
.
11.
Joyce
,
W. B.
(
1975
). “
Sabine's reverberation time and ergodic auditoriums
,”
J. Acoust. Soc. Am.
58
(
3
),
643
655
.
12.
Kuttruff
,
H.
(
2014
).
Room Acoustics
, 5th ed. (
CRC Press
,
Boca Raton, FL
), pp.
1
374
.
13.
Maa
,
D.-Y.
(
1939
). “
Distribution of eigentones in a rectangular chamber at low frequency range
,”
J. Acoust. Soc. Am.
10
(
3
),
235
238
.
14.
Moorer
,
J. A.
(
1979
). “
About this reverberation business
,”
Comp. Music J.
3
(
2
),
13
28
.
15.
Polack
,
J. D.
(
1988
). “
La transmission de l'énergie sonore dans les salles” (“The transmission of sound energy in rooms”)
, Ph.D. thesis,
Université du Maine
, Le Mans, France.
16.
Polack
,
J.-D.
(
1992
). “
Modifying chambers to play billiards: The foundations of reverberation theory
,”
Acta Acust. Acust.
76
(
6
),
256
272
.
17.
Polack
,
J.-D.
(
1993
). “
Playing billiards in the concert hall: The mathematical foundations of geometrical room acoustics
,”
Appl. Acoust.
38
(
2
),
235
244
.
18.
Polack
,
J.-D.
(
2007
). “
The relationship between eigenfrequency and image source distributions in rectangular rooms
,”
Acta Acust. Acust.
93
,
1000
1011
.
19.
Schroeder
,
M. R.
(
1962
). “
Frequency-correlation functions of frequency responses in rooms
,”
J. Acoust. Soc. Am.
34
(
12
),
1819
1823
.
20.
Schroeder
,
M. R.
(
1987
). “
Statistical parameters of the frequency response curves of large rooms
,”
J. Audio Eng. Soc.
35
(
5
),
299
306
.
21.
Schroeder
,
M. R.
, and
Kuttruff
,
K. H.
(
1962
). “
On frequency response curves in rooms. Comparison of experimental, theoretical, and Monte Carlo results for the average frequency spacing between maxima
,”
J. Acoust. Soc. Am.
34
(
1
),
76
80
.
22.
Schultz
,
T.
(
1971
). “
Diffusion in reverberation rooms
,”
J. Sound Vib.
16
(
1
),
17
28
.
23.
Vincent
,
E.
, and
Campbell
,
D. R.
(
2008
). “
Roomsimove
,” GNU Public License, http://homepages.loria.fr/evincent/software/Roomsimove_1.4.zip (Last viewed March 26, 2019).
You do not currently have access to this content.