Binaural auralization through proper room-acoustic simulation can produce a realistic listening experience as if the listener were sitting in a room with spatial perception, including enveloping reverberance. Based on analysis of experimentally measured binaural room-acoustic data, this paper discusses an approach to creating artificial but natural-sounding reverberation for binaural rendering that can be employed in simulating such an environment in an efficient way. Approaches to adjusting the spaciousness of enveloping reverberance within the context of artificially generated reverberation are investigated via hearing tests. This paper exploits the excellent pseudorandom properties of maximum-length sequences to generate deterministic and controllable decorrelations between binaural channels for artificial reverberation for room-acoustic simulations with high computational efficiency. To achieve natural-sounding enveloping reverberance in an enclosed space, and thereby an immersive environment, the shapes of both the reverberation energy decays and the spatial characteristics are found to be decisive. This paper discusses systematic hearing test results that support the mentioned finding.

1.
M.
Kleiner
,
B.-I.
Dalenbäck
, and
U. P.
Svensson
, “
Auralization—An overview
,”
J. Audio Eng. Soc.
41
(
11
),
861
875
(
1993
).
2.
M.
Vorländer
,
Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms, and Acoustic Virtual Reality
(
Springer
,
Berlin
,
2007
).
3.
N.
Xiang
,
B.
Xie
, and
T. J.
Cox
, “
Recent applications of number-theoretic sequences in audio and acoustics
,” in
Acoustics, Information, and Communication—Memorial Volume in Honor of Manfred R. Schroeder
, edited by
N.
Xiang
and
G. M.
Sessler
(
Springer
,
Cham, Switzerland
,
2015
), Chap. 6, pp.
93
111
.
4.
W. C.
Gardner
,
Reverberation Algorithms
(
Kluwer Academic
,
Cambridge, MA
,
1998
).
5.
B.
Blesser
, “
An interdisciplinary synthesis of reverberation viewpoints
,”
J. Audio Eng. Soc.
49
,
867
903
(
2001
).
6.
V.
Välimäki
,
J. D.
Parker
,
L.
Savioja
, and
J. O.
Smith
, “
Fifty years of artificial reverberation
,”
IEEE Trans. Audio Speech Lang. Process.
20
(
5
),
1421
1448
(
2012
).
7.
L.
Savioja
and
U. P.
Svensson
, “
Overview of geometrical room acoustic modeling techniques
,”
J. Acoust. Soc. Am.
138
(
2
),
708
730
(
2015
).
8.
M. R.
Schroeder
and
B. F.
Logan
, “
Colorless artificial reverberation
,”
J. Audio Eng. Soc.
9
(
3
),
192
197
(
1961
).
9.
M. R.
Schroeder
, “
Natural-sounding artificial reverberation
,”
J. Audio Eng. Soc.
10
(
3
),
219
223
(
1962
).
10.
J. A.
Moorer
, “
About this reverberation business
,”
Comput. Music J.
3
(
2
),
13
28
(
1979
).
11.
J.
Martin
,
D. V.
Maercke
, and
J.-P.
Vian
, “
Binaural simulation of concert halls: A new approach for the binaural reverberation process
,”
J. Acoust. Soc. Am.
94
(
6
),
3255
3264
(
1993
).
12.
J.
Blauert
,
H.
Lehnert
,
W.
Pompetzki
, and
N.
Xiang
, “
Binaural room simulation
,”
Acustica
72
,
295
296
(
1990
).
13.
N.
Xiang
and
J.
Blauert
, “
A miniature dummy head for binaural evaluation of tenth-scale acoustic models
,”
Appl. Acoust.
33
,
123
140
(
1991
).
14.
N.
Xiang
and
M. R.
Schroeder
, “
Reciprocal maximum-length sequence pairs for acoustical dual source measurements
,”
J. Acoust. Soc. Am.
113
(
5
),
2754
2761
(
2003
).
15.
L. A.
Jeffress
,
H. C.
Blogett
, and
B. H.
Deatherage
, “
Effect of interaural correlation on the precision of centering a noise
,”
J. Acoust. Soc. Am.
34
,
1122
1123
(
1962
).
16.
G.
Plenge
, “
Über das Problem der Im-Kopf-Lokalisation” (“On the problem of inside-the-head locatedness”)
,
Acustica
26
,
241
252
(
1972
).
17.
G.
Plenge
and
G.
Romahn
, “
Electroacoustic reproduction of ‘perceived reverberation’ for comparison in architectural acoustic investigations
,”
J. Acoust. Soc. Am.
51
,
421
424
(
1972
).
18.
P.
Zahorik
and
E. J.
Brandewie
, “
Speech intelligibility in rooms: Effect of prior listening exposure interacts with room acoustics
,”
J. Acoust. Soc. Am.
140
,
74
76
(
2016
).
19.
J.
Xia
,
B.
Xu
,
S.
Pentony
,
J.
Xu
, and
J.
Swaminathan
, “
Effects of reverberation and noise on speech intelligibility in normal-hearing and aided hearing-impaired listeners
,”
J. Acoust. Soc. Am.
143
(
3
),
1523
1533
(
2018
).
20.
J.
Blauert
,
Spatial Hearing
, 2nd ed. (
MIT Press
,
Cambridge, MA
,
1997
), Chap. 3, pp.
341
349
.
21.
E.
Teret
,
M. T.
Pastore
, and
J.
Braasch
, “
The influence of signal type on perceived reverberance
,”
J. Acoust. Soc. Am.
141
,
1675
1682
(
2017
).
22.
D.
Lee
,
D.
Cabrera
, and
W. L.
Martens
, “
The effect of loudness on the reverberance of music: Reverberance prediction using loudness models
,”
J. Acoust. Soc. Am.
131
(
2
),
1194
1205
(
2012
).
23.
D.
Bradley
and
L. M.
Wang
, “
Optimum absorption and aperture parameters for realistic coupled volume spaces determined from computational analysis and subjective testing results
,”
J. Acoust. Soc. Am.
127
,
223
232
(
2010
).
24.
N.
Xiang
, “
Acoustics in coupled volume systems
,” in
Architectural Acoustics Handbook
, edited by
N.
Xiang
(
Ross
,
Plantation, FL
,
2017
), Chap. 4, pp.
59
74
.
25.
J.
Herre
,
J.
Hilpert
,
A.
Kuntz
, and
J.
Plogsties
, “
MPEG-H audio—The new standard for universal spatial/3D audio coding
,”
J. Audio Eng. Soc.
62
,
821
830
(
2014
).
26.
B.
Xie
,
Head-Related Transfer Function and Virtual Display
(
Ross
,
Plantation, FL
,
2013
), Chaps.
11
14
.
27.
N.
Xiang
and
J.
Blauert
, “
Binaural scale modelling for auralization and prediction of acoustics in auditoria
,”
Appl. Acoust.
38
,
267
290
(
1993
).
28.
N.
Xiang
, “
Using M-sequences for determining impulse responses of LTI-systems
,”
Signal Process.
28
,
139
152
(
1992
).
29.
N.
Xiang
, “
Digital sequences
,” in
Handbook of Signal Processing in Acoustics
, edited by
D.
Havelock
,
S.
Kuwano
, and
M.
Vorländer
(
Springer
,
New York
,
2008
), Vol. 1, Chap. 6, pp.
87
106
.
30.
J.-D.
Polack
, “
Are impulse responses Gaussian noises?
,” in
Acoustics, Information, and Communication—Memorial Volume in Honor of Manfred R. Schroeder
, edited by
N.
Xiang
and
G.
Sessler
(
Springer
,
Cham, Switzerland
,
2015
), Chap.
5
, pp.
77
91
.
31.
N.
Xiang
,
J. N.
Daigle
, and
M.
Kleiner
, “
Simultaneous acoustic channel measurement via maximal-length-related sequences
,”
J. Acoust. Soc. Am.
117
,
1889
1894
(
2005
).
32.
ISO 3382-1
, “
Acoustics—Measurement of room acoustic parameters—Part 1: Performance spaces
” (International Organization for Standardization, Geneva, Switzerland,
2009
).
33.
D.
Griesinger
, “
The psychoacoustics of apparent source width, spaciousness and envelopment in performance spaces
,”
Acustica
83
,
721
731
(
1997
).
34.
L. A.
Jeffress
and
D. E.
Robinson
, “
Formulas for the coefficient of interaural correlation of noise
,”
J. Acoust. Soc. Am.
34
,
1658
1659
(
1962
).
35.
J.
Braasch
and
J.
Blauert
, “
Auditory perception in rooms
,” in
Architectural Acoustics Handbook
, edited by
N.
Xiang
(
Ross
,
Plantation, FL
,
2017
), Chap.
8
, pp.
173
196
.
36.
S.
Klockgether
and
S.
van de Par
, “
Just noticeable differences of spatial cues in echoic and anechoic acoustical environments
,”
J. Acoust. Soc. Am.
140
(
4
),
EL352
EL357
(
2016
).
37.
W.
Reichardt
,
O. A.
Alim
, and
W.
Schmidt
, “
Definitionen und Messgrundlage eines objektiven Massßes zur Ermittlung der Grenze zwischen brauchbarer und unbrauchbarer Durchsichtigkeit bei Musikdarbietungen” (“Definitions and measuring base of an objective measure for ascertaining the boundary between useful and useless transparency”)
,
Acustica
32
,
126
142
(
1975
).
38.
T.
Hidaka
,
Y.
Yamada
, and
T.
Nakagawa
, “
A new definition of boundary point between early reflections and late reverberation in room impulse responses
,”
J. Acoust. Soc. Am.
122
(
1
),
326
332
(
2007
).
39.
S.
Klockgether
,
J. V. D.
Schuitman
, and
S. V.
de Par
, “
Perceptual limits for detecting interaural-cue manipulations measured in reverberant settings
,” in
Proceedings of Meetings on Acoustics
(
2013
), Vol. 19.
40.
M. R.
Schroeder
, “
New method of measuring reverberation time
,”
J. Acoust. Soc. Am.
37
,
409
412
(
1965
).
41.
N.
Xiang
and
U.
Trivedi
, “
Spatially enveloping reverberation in sound fixing, processing and room-acoustic simulations using coded sequences
,” U.S. patent 0,119,075 (May 13,
2010
).
You do not currently have access to this content.