In this work, a technique to render the acoustic effect of scattering from finite objects in virtual reality is proposed, which aims to provide a perceptually plausible response for the listener, rather than a physically accurate response. The effect is implemented using parametric filter structures and the parameters for the filters are estimated using artificial neural networks. The networks may be trained with modeled or measured data. The input data consist of a set of geometric features describing a large quantity of source-object-receiver configurations, and the target data consist of the filter parameters computed using measured or modeled data. A proof-of-concept implementation is presented, where the geometric descriptions and computationally modeled responses of three-dimensional plate objects are used for training. In a dynamic test scenario, with a single source and plate, the approach is shown to provide a similar spectrogram when compared with a reference case, although some spectral differences remain present. Nevertheless, it is shown with a perceptual test that the technique produces only a slightly lower degree of plausibility than the state-of-the-art acoustic scattering model that accounts for diffraction, and also that the proposed technique yields a prominently higher degree of plausibility than a model that omits diffraction.

1.
Ambrosini
,
L.
,
Gabrielli
,
L.
,
Vesperini
,
F.
,
Squartini
,
S.
, and
Cattani
,
L.
(
2018
). “
Deep neural networks for road surface roughness classification from acoustic signals
,” in
144th AES Convention
.
2.
Asheim
,
A.
, and
Svensson
,
U. P.
(
2013
). “
An integral equation formulation for the diffraction from convex plates and polyhedra
,”
J. Acoust. Soc. Am.
133
(
6
),
3681
3691
.
3.
Biot
,
M. A.
, and
Tolstoy
,
I.
(
1957
). “
Formulation of wave propagation in infinite media by normal coordinates with an application to diffraction
,”
J. Acoust. Soc. Am.
29
(
3
),
381
391
.
4.
Cakir
,
E.
,
Parascandolo
,
G.
,
Heittola
,
T.
,
Huttunen
,
H.
,
Virtanen
,
T.
,
Cakir
,
E.
,
Parascandolo
,
G.
,
Heittola
,
T.
,
Huttunen
,
H.
, and
Virtanen
,
T.
(
2017
). “
Convolutional recurrent neural networks for polyphonic sound event detection
,”
IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP)
25
(
6
),
1291
1303
.
5.
Fahy
,
F. J.
(
2000
).
Foundations of Engineering Acoustics
(
Elsevier
,
Amsterdam
).
6.
Goodfellow
,
I.
,
Bengio
,
Y.
,
Courville
,
A.
, and
Bengio
,
Y.
(
2016
).
Deep Learning
(
MIT Press
,
Cambridge
), Vol. 1.
7.
Grais
,
E. M.
, and
Plumbley
,
M. D.
(
2018
). “
Combining fully convolutional and recurrent neural networks for single channel audio source separation
,” in
144th AES Convention
.
8.
Haykin
,
S.
(
1994
).
Neural Networks: A Comprehensive Foundation
(
Prentice Hall
,
Upper Saddle River, NJ, USA
).
9.
Hewett
,
D. P.
, and
Morris
,
A.
(
2015
). “
Diffraction by a right-angled impedance wedge: An edge source formulation
,”
J. Acoust. Soc. Am.
137
(
2
),
633
639
.
10.
Hinton
,
G.
,
Deng
,
L.
,
Yu
,
D.
,
Dahl
,
G. E.
,
Mohamed
,
A.-r.
,
Jaitly
,
N.
,
Senior
,
A.
,
Vanhoucke
,
V.
,
Nguyen
,
P.
,
Sainath
,
T. N.
, and
Kingsbury
,
B.
(
2012
). “
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
,”
IEEE Sign. Process. Mag.
29
(
6
),
82
97
.
11.
Huttunen
,
T.
,
Vanne
,
A.
,
Harder
,
S.
,
Paulsen
,
R. R.
,
King
,
S.
,
Perry-Smith
,
L.
, and
Kärkkäinen
,
L.
(
2014
). “
Rapid generation of personalized HRTFs
,” in
Proceedings of the AES 55th Conference: Spatial Audio
.
12.
Kohonen
,
T.
(
1988
). “
The ‘neural’ phonetic typewriter
,”
Computer
21
(
3
),
11
22
.
13.
Kon
,
H.
, and
Koike
,
H.
(
2018
). “
Deep neural networks for cross-modal estimations of acoustic reverberation characteristics from two-dimensional images
,” in
144th AES Convention
.
14.
Kuttruff
,
H.
(
2017
).
Room Acoustics
, 6th ed. (
Taylor & Francis
,
London
).
15.
Lokki
,
T.
,
Svensson
,
P.
, and
Savioja
,
L.
(
2002
). “
An efficient auralization of edge diffraction
,” in
Proceedings of AES 21st Conference: Architectural Acoustics and Sound Reinforcement
.
16.
Marsh
,
I.
, and
Brown
,
C.
(
2009
). “
Neural network classification of multibeam backscatter and bathymetry data from Stanton Bank (Area IV)
,”
Applied Acoustics
70
(
10
),
1269
1276
.
17.
Martin
,
S. R.
,
Svensson
,
U. P.
,
Slechta
,
J.
, and
Smith
,
J. O.
(
2018
). “
Modeling sound scattering using a combination of the edge source integral equation and the boundary element method
,”
J. Acoust. Soc. Am.
144
(
1
),
131
141
.
18.
Murphy
,
D. T.
, and
Beeson
,
M. J.
(
2003
). “
Modelling spatial sound occlusion and diffraction effects using the digital waveguide mesh
,” in
Proceedings of AES 24th Conference: Multichannel Audio, The New Reality
.
19.
Pellegrini
,
R. S.
(
2001
). “
Quality assessment of auditory virtual environments
,”
Proceedings of 2001 International Conference on Auditory Display (ICAD)
.
20.
Pulkki
,
V.
, and
Karjalainen
,
M.
(
2015
).
Communication Acoustics: An Introduction to Speech, Audio and Psychoacoustics
(
Wiley
,
London
).
21.
Pulkki
,
V.
,
Lokki
,
T.
, and
Savioja
,
L.
(
2002
). “
Implementation and visualization of edge diffraction with image-source method
,” in
Proceedings of 112th AES Convention
.
22.
Raghuvanshi
,
N.
, and
Snyder
,
J.
(
2014
). “
Parametric wave field coding for precomputed sound propagation
,”
ACM Trans. Graphics
33
(
4
),
38
.
23.
Savioja
,
L.
,
Huopaniemi
,
J.
,
Lokki
,
T.
, and
Väänänen
,
R.
(
1999
). “
Creating interactive virtual acoustic environments
,”
J. Audio Eng. Soc.
47
(
9
),
675
705
.
24.
Savioja
,
L.
, and
Svensson
,
U. P.
(
2015
). “
Overview of geometrical room acoustic modeling techniques
,”
J. Acoust. Soc. Am.
138
(
2
),
708
730
.
25.
Schissler
,
C.
,
Loftin
,
C.
, and
Manocha
,
D.
(
2018
). “
Acoustic classification and optimization for multi-modal rendering of real-world scenes
,”
IEEE Transactions Visual. Comput. Graphics
24
(
3
),
1246
1259
.
26.
Schissler
,
C.
,
Mehra
,
R.
, and
Manocha
,
D.
(
2014
). “
High-order diffraction and diffuse reflections for interactive sound propagation in large environments
,”
ACM Trans. Graphics
33
(
4
),
39
.
27.
Sherman
,
W.
, and
Craig
,
A.
(
2003
).
Understanding Virtual Reality: Interface, Application, and Design
(
Morgan Kaufmann
,
San Francisco
).
28.
Svensson
,
P.
(
2000
). “
Edge diffraction Matlab toolbox (EDtoolbox)
,” https://github.com/upsvensson/Edge-diffraction-Matlab-toolbox (Last viewed April 20, 2018).
29.
Svensson
,
U. P.
,
Fred
,
R. I.
, and
Vanderkooy
,
J.
(
1999
). “
An analytic secondary source model of edge diffraction impulse responses
,”
J. Acoust. Soc. Am.
106
(
5
),
2331
2344
.
30.
Tsingos
,
N.
,
Funkhouser
,
T.
,
Ngan
,
A.
, and
Carlbom
,
I.
(
2001
). “
Modeling acoustics in virtual environments using the uniform theory of diffraction
,” in
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques
, SIGGRAPH'01 (ACM, New York), pp.
545
552
.
31.
Tsingos
,
N.
, and
Gascuel
,
J.-D.
(
1998
). “
Fast rendering of sound occlusion and diffraction effects for virtual acoustic environments
,” in
Proceedings of 104th AES Convention
.
32.
Tsingos
,
N.
,
Jiang
,
W.
, and
Williams
,
I.
(
2011
). “
Using programmable graphics hardware for acoustics and audio rendering
,”
J. Audio Eng. Soc.
59
(
9
),
628
646
.
33.
Välimäki
,
V.
, and
Reiss
,
J. D.
(
2016
). “
All about audio equalization: Solutions and frontiers
,”
Appl. Sci.
6
(
5
),
129
.
34.
Vorländer
,
M.
(
2007
).
Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality
(
Springer
,
Berlin
).
35.
Vorländer
,
M.
(
2013
). “
Computer simulations in room acoustics: Concepts and uncertainties
,”
J. Acoust. Soc. Am.
133
(
3
),
1203
1213
.
36.
Watanabe
,
S.
, and
Yoneyama
,
M.
(
1992
). “
An ultrasonic visual sensor for three-dimensional object recognition using neural networks
,”
IEEE Trans. Robotics Automat.
8
(
2
),
240
249
.
You do not currently have access to this content.