Oceanic ambient noise is a dynamic mixture of biologic, geophysical, and anthropogenic sound sources. A goal of research is to put some order in this cacophony of information, understand the received spectral content and determine the primary contributors to the ambient noise. This paper compares three methods to assist in that process (with emphasis on noise correlation techniques): noise correlation matrices, manual selection of noise spectra, and principal component analysis. Comparison followed a common process: selection of a replica set (best termed a characteristic subset of noise spectra), which are used to recreate the original noise field for comparison and consequent decision as to whether that replica set represented the noise measurements adequately. Conclusions of this study are (1) noise correlation matrices provide the best definition of the spectra that represent a particular source and offer potential in organizing and identifying specific noise source content. (2) Manual sorting of noise spectra, while able to identify specific events easily, is both labor intensive, given the quantity of data available; and suffers from incorrect interpretation of multiple competing sound sources, when present. (3) Principal component analysis provides the best reconstruction of measured noise, but has difficulty linking components to physical source mechanisms.

1.
D. L.
Bradley
and
S. M.
Nichols
, “
Worldwide low-frequency ambient noise
,”
Acoust. Today
11
(
1
),
20
26
(
2015
).
2.
S. M.
Nichols
and
D. L.
Bradley
, “
Methods for identifying source mechanisms in the low-frequency deep-ocean ambient noise field
,” in
Proc. of Underwater Acoustics Conf. and Exhib.
, Corfu, Greece,
2013
[URL: http://www.uaconferences.org/docs/Past_Proceedings/UACE2013_Proceedings.pdf].
3.
S. M.
Nichols
and
D. L.
Bradley
, “
Using correlation matrices to identify temporal characteristics of ambient noise
,” in
Proc. of Underwater Acoustics Conf. and Exhib.
, Rhodes, Greece,
2014
[URL: http://www.uaconferences.org/docs/Past_Proceedings/UACE2014_Proceedings.pdf].
4.
S.
Nichols
and
D. L.
Bradley
, “
Correlation matrices as a method of source function isolation and classification in ambient noise
,”
J. Acoust. Soc. Am.
135
,
2299
(
2014
).
5.
S.
Nichols
and
D. L.
Bradley
, “
Identifying frequency and temporal characteristics of ambient noise using correlation matrices
,”
J. Acoust. Soc. Am.
139
,
2226
(
2016
).
6.
M.
Friendly
, “
Corrgrams: Exploratory displays for correlation matrices
,”
Am. Stat.
56
(
4
),
316
324
(
2002
).
7.
L. J.
Frasinski
,
K.
Codling
, and
P. A.
Hatherly
, “
Covariance mapping: A correlation method applied to multiphoton multiple ionization
,”
Science
246
(
4933
),
1029
1031
(
1989
).
8.
V.
Zhaunerchyk
,
M.
Mucke
,
P.
Salen
,
P.
Van der Meulen
,
M.
Kaminska
,
R. J.
Squibb
,
L. J.
Frasinski
,
M.
Siano
,
J. H. D.
Eland
,
P.
Linusson
,
R. D.
Thomas
,
M.
Larsson
,
L.
Foucar
,
J.
Ullrich
,
K.
Motomura
,
S.
Mondal
,
K.
Ueda
,
T.
Osipov
,
L.
Fang
,
B. F.
Murphy
,
N.
Berrah
,
C.
Bostedt
,
J. D.
Bozek
,
S.
Schorb
,
M.
Messerschmidt
,
J. M.
Glownia
,
J. P.
Cryan
,
R. N.
Coffee
,
O.
Takahashi
,
S.
Wada
,
M. N.
Piancastelli
,
R.
Richter
,
K. C.
Prince
, and
R.
Feifel
, “
Using covariance mapping to investigate the dynamics of multi-photon ionization processes of Ne atoms exposed to X-FEL pulses
,”
J. Phys. B: At. Mol. Opt. Phys.
46
,
164034
(
2013
).
9.
M.
Weingarth
,
P.
Tekely
,
R.
Bruschweiler
, and
G.
Bodenhausen
, “
Improving the quality of 2D solid-state NMR spectra of microcrystalline proteins by covariance analysis
,”
Chem. Commun.
46
,
952
954
(
2010
).
10.
D. J.
Fenn
,
M. A.
Porter
,
S.
Williams
,
M.
McDonald
,
N. F.
Johnson
, and
N. S.
Jones
, “
Temporal evolution of financial-market correlations
,”
Phys. Rev. E
84
,
026109
(
2011
).
11.
F. K.
Duennebier
,
R.
Lukas
,
E.-M.
Nosal
, and
J.
Aucan
, “
Wind, waves, and acoustic background levels at Station ALOHA
,”
J. Geophys. Res.
117
(
C3
),
C03017
, (
2012
).
12.
R. H.
Nichols
and
C. E.
Sayer
, “
Frequency-frequency correlations of ocean ambient noise levels
,”
J. Acoust Soc. Am.
61
(
5
),
1188
1190
(
1977
).
13.
D. C.
Montgomery
and
G. C.
Runger
,
Applied Statistics and Probability for Engineers
, 2nd ed. (
Wiley
,
New York
,
1999
), p.
504
.
14.
K. R.
Curtis
,
B. M.
Howe
, and
J. A.
Mercer
, “
Low-frequency ambient sound in the North Pacific: Long time series observations
,”
J. Acoust. Soc. Am.
106
(
6
),
3189
3200
(
1999
).
15.
J. L.
Miksis-Olds
and
S. M.
Nichols
, “
Is low frequency ocean sound increasing globally?
,”
J. Acoust. Soc. Am.
139
(
1
),
501
511
(
2016
).
16.
M. K.
Prior
and
D. J.
Brown
, “
Signal grouping by correlation of cepstra
,” in
Proceedings of the 2nd International Conference on Underwater Acoustics
, Rhodes, Greece,
2014
.
17.
H.
Abdi
and
L. J.
Williams
, “
Principal component analysis
,”
Wiley Interdiscip. Rev. Comput. Stat.
2
(
4
),
433
459
(
2010
).
18.
M. D.
Collins
,
L. T.
Fialkowski
,
W. A.
Kuperman
, and
J. S.
Perkins
, “
The multivalued Bartlett processor and source tracking
,”
J. Acoust. Soc. Am.
97
(
1
),
235
241
(
1995
).
19.
L. T.
Fialkowski
,
M. D.
Collins
,
J. S.
Perkins
, and
W. A.
Kuperman
, “
Source localization in noisy and uncertain ocean environments
,”
J. Acoust. Soc. Am.
101
(
6
),
3539
3545
(
1997
).
20.
K.-P.
Li
,
G. W.
Hughes
, and
A. S.
House
, “
Correlation characteristics and dimensionality of speech spectra
,”
J. Acoust. Soc. Am.
46
(
4
),
1019
1025
(
1969
).
21.
S. A.
Zahorian
and
M.
Rothenberg
, “
Principal-components analysis for low-redundancy encoding of speech spectra
,”
J. Acoust. Soc. Am.
69
(
3
),
832
845
(
1981
).
22.
A. B.
Soto
,
H.
Marsh
,
Y.
Everingham
,
J. N.
Smith
,
G. J.
Parra
, and
M.
Noad
, “
Discriminating between the vocalizations of Indo-Pacific humpback and Australian snubfin dolphins in Queensland, Australia
,”
J. Acoust. Soc. Am.
136
(
2
),
930
938
(
2014
).
23.
E.
Hoppe
and
M.
Roan
, “
Principal component analysis for emergent acoustic signal detection with supporting simulation results
,”
J. Acoust. Soc. Am.
130
(
4
),
1962
1973
(
2011
).
24.
M.
Lawrence
, “
Acoustic monitoring of the global ocean for the CTBT
,” in
Proceedings of Acoustics 2004
, Gold Coast, Australia,
2004
.
25.
S. M.
Nichols
and
D. L.
Bradley
, “
Global examination of the wind-dependence of very low frequency underwater ambient noise
,”
J. Acoust. Soc. Am.
139
(
3
),
1110
1123
(
2016
).
26.
D. A.
Walker
,
C. S.
McCreery
, and
Y.
Hiyoshi
, “
T-phase spectra, seismic moments, and tsunamigenesis
,”
Bull. Seismol. Soc. Am.
82
(
3
),
1275
1305
(
1992
).
27.
M. S.
Longuet-Higgins
, “
A theory on the origin of microseisms
,”
Philos. Trans. R. Soc. London Ser. A
243
,
1
35
(
1950
).
28.
W. A.
Watkins
,
P.
Tyack
, and
K. E.
Moore
, “
The 20-Hz signals of finback whales (Balaenoptera physalus)
,”
J. Acoust. Soc. Am.
82
(
6
),
1901
1912
(
1987
).
29.
K. M.
Stafford
,
S. L.
Nieukirk
, and
C. G.
Fox
, “
Geographic and seasonal variation of blue whale calls in the North Pacific
,”
J. Cetacean Res. Manage.
3
(
1
),
65
76
(
2001
).
30.
S. L.
Nieukirk
,
D. K.
Mellinger
,
S. E.
Moore
,
K.
Klinck
,
R. P.
Dziak
, and
J.
Goslin
, “
Sounds from airguns and fin whales recorded in the mid-Atlantic Ocean, 1999–2009
,”
J. Acoust. Soc. Am.
131
(
2
),
1102
1112
(
2012
).
31.
P. T.
Arveson
and
D. J.
Vendittis
, “
Radiated noise characteristics of a modern cargo ship
,”
J. Acoust. Soc. Am.
107
(
1
),
118
129
(
2000
).
32.
H.
Hotelling
, “
Analysis of a complex of statistical variables into principal components
,”
J. Educ. Psychol.
24
(
6
),
417
441
(
1933
).
33.
H.
Hotelling
, “
Analysis of a complex of statistical variables into principal components
,”
J. Educ. Psychol.
24
(
7
),
498
520
(
1933
).
You do not currently have access to this content.