Three dimensional acoustic soundfields can be represented by a set of spherical harmonic coefficients that are extracted from pressure signals recorded by a spherical microphone array. The extraction method used and truncation order chosen introduce errors of spatial aliasing in the coefficients and truncation error in a reconstructed signal. A spatial Wiener filter (SWF) extraction method is proposed in this paper, using second order statistics of typical soundfield characteristics (signal power, estimated source locations, and internal microphone noise) and accounts for the presence of coefficients beyond the truncation order to reduce spatial aliasing in the extracted coefficients. The SWF can also distinguish between “wanted” and “unwanted” sources, reducing the contributions of unwanted sources to the extracted coefficients. The SWF is compared against the state of the art methods; regularized inverse (or generalized inverse), and orthonormal extraction methods, which are explored under a similar framework to the SWF. The authors compare these methods and show the benefit of the SWF for plane waves, with varying assumptions about the source characteristics. The SWF can also extract coefficients beyond the traditional truncation limit of a given array, unlike other methods.

1.
J.
Meyer
and
G.
Elko
, “
A spherical microphone array for spatial sound recording
,”
J. Acoust. Soc. Am.
111
,
2346
(
2002
).
2.
R.
Duraiswami
,
Z.
Li
,
D.
Zotkin
, and
E.
Grassi
, “
Spherical and hemispherical microphone arrays for capture and analysis of sound fields
,”
J. Acoust. Soc. Am.
120
,
3225
(
2006
).
3.
G.
Elko
, “
A scalable spherical microphone array for spatial sound capture
,”
J. Acoust. Soc. Am.
116
,
2525
(
2004
).
4.
A.
Granados
and
F.
Jacobsen
, “
Regularized reconstruction of sound fields with a spherical microphone array
,”
J. Acoust. Soc. Am.
133
,
3295
(
2013
).
5.
S.
Spors
,
H.
Wierstorf
,
A.
Raake
,
F.
Melchior
,
M.
Frank
, and
F.
Zotter
, “
Spatial sound with loudspeakers and its perception: A review of the current state
,”
Proc. IEEE
101
,
1920
1938
(
2013
).
6.
E.
Fernandez-Grande
, “
Sound field reconstruction using a spherical microphone array
,”
J. Acoust. Soc. Am.
139
,
1168
1178
(
2016
).
7.
M.
Lee
and
J.
Bolton
, “
Scan-based near-field acoustical holography and partial field decomposition in the presence of noise and source level variation
,”
J. Acoust. Soc. Am.
119
,
382
393
(
2006
).
8.
J.
Bendat
and
A.
Piersol
,
Random Data Analysis and Measurement Procedures
(
Wiley
,
Hoboken, NJ
,
2000
).
9.
J.
Antoni
, “
A Bayesian approach to sound source reconstruction: Optimal basis, regularization, and focusing
,”
J. Acoust. Soc. Am.
131
,
2873
2890
(
2012
).
10.
J.
Pascal
and
J.
Li
, “
Resolution improvement of beamformers using spherical microphone array
,”
J. Acoust. Soc. Am.
123
,
3308
(
2008
).
11.
J.
Meyer
and
G.
Elko
, “
Eigenbeam beamforming for microphone arrays
,”
J. Acoust. Soc. Am.
120
,
3177
(
2006
).
12.
Z.
Li
and
R.
Duraiswami
, “
Flexible and optimal design of spherical microphone arrays for beamforming
,”
IEEE Trans. Audio Speech Signal Process.
15
,
702
714
(
2007
).
13.
E. G.
Williams
,
N.
Valdivia
,
P. C.
Herdic
, and
J.
Klos
, “
Volumetric acoustic vector intensity imager
,”
J. Acoust. Soc. Am.
120
,
1887
1897
(
2006
).
14.
J.
Maynard
,
E.
Williams
, and
Y.
Lee
, “
Nearfield acoustic holography
,”
J. Acoust. Soc. Am.
78
,
1395
1413
(
1985
).
15.
E.
Williams
, “
Regularization methods for near-field acoustical holography
,”
J. Acoust. Soc. Am.
110
,
1976
1988
(
2001
).
16.
E.
Williams
and
K.
Takeshima
, “
Vector intensity reconstructions in a volume surrounding a rigid spherical measurement array
,”
J. Acoust. Soc. Am.
127
,
773
783
(
2010
).
17.
E.
Fernandez-Grande
and
A.
Xenaki
, “
Compressive sensing with a spherical microphone array
,”
J. Acoust. Soc. Am.
139
,
EL45
EL49
(
2016
).
18.
N.
Epain
,
C.
Jin
, and
A.
Van Schaik
, “
The application of compressive sampling to the analysis and synthesis of spatial sound fields
,” in
AES Conf.
(
2009
), Vol. 127, pp.
1
12
.
19.
E.
Williams
,
Fourier Acoustics
(
Academic
,
London, UK
,
1999
).
20.
S.
Brown
and
D.
Sen
, “
Analysis of truncation and sampling errors in the spherical harmonic representation of soundfields
,”
J. Acoust. Soc. Am.
130
,
2451
(
2011
).
21.
R.
Hardin
and
N.
Sloane
, “
McLaren's improved snub cube and other new spherical designs in three dimensions
,”
J. Discrete Comput. Geom.
15
,
429
441
(
1996
).
22.
S.
Brown
,
S.
Wang
, and
D.
Sen
, “
Analysis of the spherical wave truncation error for spherical harmonic soundfield expansions
,” in
ICASSP
(
2012
).
23.
B.
Rafaely
,
B.
Weiss
, and
E.
Bachmat
, “
Spatial aliasing in spherical microphone arrays
,”
IEEE Trans. Signal Proc.
55
,
1003
1010
(
2007
).
24.
D.
Sen
,
S.
Wang
, and
A.
Deffrasnes
, “
Psychoacoustically motivated, frequency dependent Tikhonov regularization for soundfield parametrization
,” in
ICASSP
(
2010
).
25.
P.
Hansen
,
Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion
(
SIAM
,
Philadelphia, PA
,
2005
).
26.
A.
Laborie
,
R.
Bruno
, and
S.
Montoya
, “
A new comprehensive approach to surround sound recording
,” in
AES Conf.
(
2003
).
27.
D.
Zotkin
,
R.
Duraiswami
, and
N.
Gumerov
, “
Plane-wave decomposition of acoustical scenes via spherical and cylindrical microphone arrays
,”
IEEE Trans. Signal Process.
18
,
2
16
(
2010
).
28.
J.
Meyer
and
G.
Elko
, “
A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield
,” in
ICASSP
(
2002
), pp.
1781
1784
.
29.
S.
Brown
and
D.
Sen
, “
Error analysis of spherical harmonic soundfield representations in terms of truncation and aliasing errors
,” in
ICASSP
(
2013
), pp.
360
364
.
30.
B.
Rafaely
, “
Analysis and design of spherical microphone arrays
,”
IEEE Trans. Speech Audio Process.
13
,
135
143
(
2005
).
31.
H.
Teutsch
, “
Wavefield decomposition
,” in
Modal Array Signal Processing
(
Springer
,
Berlin
,
2007
), pp.
41
93
.
32.
M.
Park
and
B.
Rafaely
, “
Sound-field analysis by plane-wave decomposition using spherical microphone array
,”
J. Acoust. Soc. Am.
118
,
3094
3103
(
2005
).
33.
mh acoustics
, “
em32 Eigenmike Microphone Array Manual v15.0
” (
2012
).
34.
S.
Sobolev
, “
On mechanical quadrature formulas on the sphere
,”
Sib. Math. J.
3
,
769
796
(
1962
) (in Russian).
35.
K.
Hesse
and
R. S.
Womersley
, “
Numerical integration with polynomial exactness over a spherical cap
,”
Adv. Comp. Math.
36
,
451
483
(
2012
).
36.
T.
Abhayapala
,
T.
Pollock
, and
R.
Kennedy
Characterization of 3D spatial wireless channels
,” in
Vehicular Technical Conference
(
VTC
2003
), pp.
123
127
.
You do not currently have access to this content.