In this paper, a modeling extension for the description of wave propagation in rigid porous media at high frequencies is used. To better characterize the visco-inertial and thermal interactions between the fluid and the structure in this regime, two additional characteristic viscous and thermal surfaces Σ and Σ are taken into account, as initially introduced in Kergomard, Lafarge, and Gilbert [Acta Acust. Acust. 99(4), 557–571 (2013)]. This extends the modeling order of the dynamic tortuosity and compressibility. A sensitivity analysis is performed on the additional parameters, showing that only the viscous surface Σ has an influence on transmitted waves in the high frequency regime, for materials having a low viscous characteristic length. A general Bayesian inference is then conducted to infer simultaneously the posterior probability densities of the parameters associated with the visco-inertial effects, i.e., the porosity, tortuosity, the viscous characteristic length, and the viscous characteristic surface. The proposed method is based on the measurement of waves transmitted by a slab of rigid porous material in the time domain. Bayesian inference results obtained on three different porous materials are presented.

1.
J.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
, 2nd ed. (
John Wiley & Sons
,
New York
,
2009
).
2.
J. A.
Vrugt
,
C. J. F.
ter Braak
,
M. P.
Clark
,
J. M.
Hyman
, and
B. A.
Robinson
, “
Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation
,”
Water Resour. Res.
44
(
12
),
W00B09
(2008).
3.
T.
Haire
and
C.
Langton
, “
Biot theory: A review of its application to ultrasound propagation through cancellous bone
,”
Bone
24
(
4
),
291
295
(
1999
).
4.
M. A.
Biot
, “
Mechanics of deformation and acoustic propagation in porous media
,”
J. Appl. Phys.
33
(
4
),
1482
1498
(
1962
).
5.
P.
Bonfiglio
and
F.
Pompoli
, “
Inversion problems for determining physical parameters of porous materials: Overview and comparison between different methods
,”
Acta Acust. Acust.
99
(
3
),
341
351
(
2013
).
6.
K. V.
Horoshenkov
, “
A review of acoustical methods for porous material characterisation
,”
Int. J. Acoust. Vib.
22
,
92
103
(
2017
).
7.
L. L.
Beranek
, “
Acoustical properties of homogeneous, isotropic rigid tiles and flexible blankets
,”
J. Acoust. Soc. Am.
19
(
4
),
556
568
(
1947
).
8.
R. L.
Brown
and
R. H.
Bolt
, “
The measurement of flow resistance of porous acoustic materials
,”
J. Acoust. Soc. Am.
13
(
4
),
337
344
(
1942
).
9.
Z. E. A.
Fellah
,
S.
Berger
,
W.
Lauriks
,
C.
Depollier
,
C.
Aristegui
, and
J.-Y.
Chapelon
, “
Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence
,”
J. Acoust. Soc. Am.
113
(
5
),
2424
2433
(
2003
).
10.
R.
Panneton
and
X.
Olny
, “
Acoustical determination of the parameters governing viscous dissipation in porous media
,”
J. Acoust. Soc. Am.
119
(
4
),
2027
2040
(
2006
).
11.
J.-P.
Groby
,
E.
Ogam
,
L.
De Ryck
,
N.
Sebaa
, and
W.
Lauriks
, “
Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reflected coefficients
,”
J. Acoust. Soc. Am.
127
(
2
),
764
772
(
2010
).
12.
O.
Umnova
,
K.
Attenborough
,
H.-C.
Shin
, and
A.
Cummings
, “
Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials
,”
Appl. Acoust.
66
(
6
),
607
624
(
2005
).
13.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
14.
Y.
Champoux
and
J.-F.
Allard
, “
Dynamic tortuosity and bulk modulus in air-saturated porous media
,”
J. Appl. Phys.
70
(
4
),
1975
1979
(
1991
).
15.
D.
Lafarge
,
P.
Lemarinier
,
J. F.
Allard
, and
V.
Tarnow
, “
Dynamic compressibility of air in porous structures at audible frequencies
,”
J. Acoust. Soc. Am.
102
(
4
),
1995
2006
(
1997
).
16.
T. G.
Zieliński
, “
Normalized inverse characterization of sound absorbing rigid porous media
,”
J. Acoust. Soc. Am.
137
(
6
),
3232
3243
(
2015
).
17.
Y.
Atalla
and
R.
Panneton
, “
Inverse acoustical characterization of open cell porous media using impedance tube measurements
,”
Canadian Acoust.
33
(
1
),
11
24
(
2005
).
18.
P.
Cobo
and
F.
Simón
, “
A comparison of impedance models for the inverse estimation of the non-acoustical parameters of granular absorbers
,”
J. Appl. Acoust.
104
,
119
126
(
2016
).
19.
T.
Hentati
,
L.
Bouazizi
,
M.
Taktak
,
H.
Trabelsi
, and
M.
Haddar
, “
Multi-levels inverse identification of physical parameters of porous materials
,”
J. Appl. Acoust.
108
,
26
30
(
2016
).
20.
J.
Vanhuyse
,
E.
Deckers
,
S.
Jonckheere
,
B.
Pluymers
, and
W.
Desmet
, “
Global optimisation methods for poroelastic material characterisation using a clamped sample in a kundt tube setup
,”
Mech. Syst. Signal Process.
68–69
,
462
478
(
2016
).
21.
P.
Leclaire
,
L.
Kelders
,
W.
Lauriks
,
M.
Melon
,
N.
Brown
, and
B.
Castagnede
, “
Determination of the viscous and thermal characteristic lengths of plastic foams by ultrasonic measurements in helium and air
,”
J. Appl. Phys.
80
(
4
),
2009
2012
(
1996
).
22.
N.
Brown
,
M.
Melon
,
V.
Montembault
,
B.
Castagnède
,
W.
Lauriks
, and
P.
Leclaire
, “
Evaluation of the viscous characteristic length of air-saturated porous materials from the ultrasonic dispersion curve
,”
Comptes rendus de l'Académie des sciences. Série IIb, Mécanique
322
(
2
),
122
127
(
1996
).
23.
Z. E. A.
Fellah
,
F. G.
Mitri
,
M.
Fellah
,
E.
Ogam
, and
C.
Depollier
, “
Ultrasonic characterization of porous absorbing materials: Inverse problem
,”
J. Sound. Vib.
302
(
4
),
746
759
(
2007
).
24.
Z. E. A.
Fellah
,
S.
Berger
,
W.
Lauriks
,
C.
Depollier
,
P.
Trompette
, and
J.
Chapelon
, “
Ultrasonic measurement of the porosity and tortuosity of air-saturated random packings of beads
,”
J. Appl. Phys.
93
(
11
),
9352
9359
(
2003
).
25.
C.
Ayrault
,
A.
Moussatov
,
B.
Castagnède
, and
D.
Lafarge
, “
Ultrasonic characterization of plastic foams via measurements with static pressure variations
,”
Appl. Phys. Lett.
74
(
21
),
3224
3226
(
1999
).
26.
Z. E. A.
Fellah
,
M.
Sadouki
,
M.
Fellah
,
F.
Mitri
,
E.
Ogam
, and
C.
Dépollier
, “
Simultaneous determination of porosity, tortuosity, viscous and thermal characteristic lengths of rigid porous materials
,”
J. Appl. Phys.
114
(
20
),
204902
(
2013
).
27.
J.-D.
Chazot
,
E.
Zhang
, and
J.
Antoni
, “
Acoustical and mechanical characterization of poroelastic materials using a Bayesian approach
,”
J. Acoust. Soc. Am.
131
(
6
),
4584
4595
(
2012
).
28.
R.
Roncen
,
Z. E. A.
Fellah
,
F.
Simon
,
E.
Piot
,
M.
Fellah
,
E.
Ogam
, and
C.
Depollier
, “
Bayesian inference for the ultrasonic characterization of rigid porous materials using reflected waves by the first interface
,”
J. Acoust. Soc. Am.
144
(
1
),
210
221
(
2018
).
29.
J.
Kergomard
,
D.
Lafarge
, and
J.
Gilbert
, “
Transients in porous media: Exact and modelled time-domain Green's functions
,”
Acta Acust. Acust.
99
(
4
),
557
571
(
2013
).
30.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
(
2
),
179
191
(
1956
).
31.
C.
Zwikker
and
C. W.
Kosten
,
Sound Absorbing Materials
(
Elsevier
,
New York
,
1949
).
32.
D.
Lafarge
, “
Propagation du son dans les matériaux poreux à structure rigide saturés par un fluide viscothermique: Définition de paramètres géométriques, analogie electromagnétique, temps de relaxation
” (“Sound propagation in rigid porous materials saturated with a viscothermal fluid”), Ph.D. thesis, Université du Maine,
1993
.
33.
S. R.
Pride
,
F. D.
Morgan
, and
A. F.
Gangi
, “
Drag forces of porous-medium acoustics
,”
Phys. Rev. B
47
(
9
),
4964
4978
(
1993
).
34.
A.
Norris
, “
On the viscodynamic operator in Biot's equations of poroelasticity
,”
J. Wave Mat. Interact.
1
,
365
380
(
1986
).
35.
K. V.
Horoshenkov
,
J.-P.
Groby
, and
O.
Dazel
, “
Asymptotic limits of some models for sound propagation in porous media and the assignment of the pore characteristic lengths
,”
J. Acoust. Soc. Am.
139
(
5
),
2463
2474
(
2016
).
36.
A.
Moussatov
,
C.
Ayrault
, and
B.
Castagnède
, “
Porous material characterization—ultrasonic method for estimation of tortuosity and characteristic length using a barometric chamber
,”
Ultrasonics
39
(
3
),
195
202
(
2001
).
37.
M.
Ouisse
,
M.
Ichchou
,
S.
Chedly
, and
M.
Collet
, “
On the sensitivity analysis of porous material models
,”
J. Sound Vib.
331
(
24
),
5292
5308
(
2012
).
38.
R. C.
Smith
,
Uncertainty Quantification: Theory, Implementation, and Applications
(
Siam
,
Philadelphia, PA
,
2013
), Vol.
12
.
39.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
(
6
),
1087
1092
(
1953
).
40.
W. K.
Hastings
, “
Monte Carlo sampling methods using Markov chains and their applications
,”
Biometrika
57
(
1
),
97
109
(
1970
).
41.
W. R.
Gilks
,
S.
Richardson
, and
D.
Spiegelhalter
,
Markov Chain Monte Carlo in Practice
(
CRC Press
,
New York
,
1995
).
42.
E.
Laloy
and
J. A.
Vrugt
, “
High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing
,”
Water Resour. Res.
48
(
1
),
W01526
(
2012
).
43.
A.
Gelman
and
D. B.
Rubin
, “
Inference from iterative simulation using multiple sequences
,”
Stat. Sci.
7
(
4
),
457
472
(
1992
).
44.
R.
Roncen
,
Z. E. A.
Fellah
,
D.
Lafarge
,
E.
Piot
,
F.
Simon
,
E.
Ogam
,
M.
Fellah
, and
C.
Depollier
, “
Acoustical modeling and Bayesian inference for rigid porous media in the low-mid frequency regime
,”
J. Acoust. Soc. Am.
144
(
6
),
3084
3101
(
2018
).
45.
Z. E. A.
Fellah
,
C.
Depollier
,
M.
Fellah
,
W.
Lauriks
, and
J.-Y.
Chapelon
, “
Influence of dynamic tortuosity and compressibility on the propagation of transient waves in porous media
,”
Wave Motion
41
(
2
),
145
161
(
2005
).
46.
Y.
Champoux
,
M. R.
Stinson
, and
G. A.
Daigle
, “
Air-based system for the measurement of porosity
,”
J. Acoust. Soc. Am.
89
(
2
),
910
916
(
1991
).
You do not currently have access to this content.