The generalized cross correlation (GCC) is an efficient technique for performing acoustic imaging. However, it suffers from important limitations such as a large main lobe width for noise sources with low frequency content or a high amplitude of side lobes for noise sources with high frequencies. Prefiltering operation of the microphone signals by a weighting function can be used to improve the acoustic image. In this work, two weighting functions based on PHAse Transform (PHAT) improvements are used. The first adds an exponent to the PHAT expression (ρ-PHAT), while the second adds the minimum value of the coherence function to the denominator (ρ-PHAT-C). Numerical acoustic images obtained with the GCC and those weighting functions are compared and quantitatively assessed thanks to a metric based on a covariance ellipse, which surrounds either the main lobe or the side lobes. The weighting function ρ-PHAT-C provides the smallest surface ellipses especially when the arithmetic of the GCC is replaced by the geometric mean (GEO). Experimental measurements are carried out in a hemi-anechoic room and a reverberant chamber where two loudspeakers were set in front of microphone array. The acoustic images obtained confirm that the ρ-PHAT-C with the GEO outperforms the GCC, GCC-PHAT, and GCC ρ-PHAT.

1.
Aarabi
,
P.
(
2003
). “
The fusion of distributed microphone arrays for sound localization
,”
EURASIP J. Appl. Signal Process.
2003
,
338
347
.
2.
Bai
,
M. R.
, and
Chen
,
C.-C.
(
2014
). “
Farfield and nearfield source identification for machine tools using microphone array imaging systems
,” in
Procedia Engineering Vol 79, 37th National Conference on Theoretical and Applied Mechanics (37th NCTAM 2013) & The 1st International Conference on Mechanics (1st ICM)
, November 8–9, Hsinchu, Taiwan, pp.
345
354
.
3.
Barré
,
S.
, and
Ortiz
,
N. M.
(
2015
). “
Room impulse response measurement and delay-and-sum beamforming, application to room and building acoustics
,” in
Proceedings of Euronoise 2015
, May 31–June 3, Masstricht, The Netherlands, pp.
161
166
.
4.
Camier
,
C.
,
Provencher
,
J.
,
Padois
,
T.
,
Gauthier
,
P.-A.
,
Berry
,
A.
,
Blais
,
J.-F.
, and
Lapointe
,
R.
(
2013
). “
Fly-over source localization on civil aircrafts
,” in
Proceedings of the 9th AIAA/CEAS Aeroacoustics Conference (AIAA 2013-2212)
, May 27–29, Berlin, Germany, pp.
1
11
.
5.
Carter
,
G. C.
,
Nuttall
,
A. H.
, and
Cable
,
P. G.
(
1972
). “
The smoothed coherence transform
,” Tech. Memo No. TC-159-72, Naval Underwater Systems Center, New London Lab, New London, CT.
6.
Chiariotti
,
P.
,
Martarelli
,
M.
, and
Castellini
,
P.
(
2019
). “
Acoustic beamforming for noise source localization - reviews, methodology and applications
,”
Mech. Syst. Signal Process.
120
,
422
448
.
7.
Cobos
,
M.
,
Antonacci
,
F.
,
Alexandridis
,
A.
,
Mouchtaris
,
A.
, and
Lee
,
B.
(
2017
). “
A survey of sound source localization methods in wireless acoustic sensor networks
,”
Wireless Commun. Mobile Comput.
2017
,
3956282
.
8.
Courtois
,
F. L.
,
Thomas
,
J.-H.
,
Poisson
,
F.
, and
Pascal
,
J.-C.
(
2016
). “
Genetic optimisation of a plane array geometry for beamforming. Application to source localisation in a high speed train
,”
J. Sound Vib.
371
,
78
93
.
9.
Dmochowski
,
J. P.
,
Benesty
,
J.
, and
Affes
,
S.
(
2007
). “
A generalized steered response power method for computationally viable source localization
,”
IEEE Trans. Audio Speech Lang. Process.
15
(
8
),
2510
2526
.
10.
Heilmann
,
G.
, and
Meyer
,
A.
(
2008
). “
Beamforming in the time-domain using 3D-microphone arrays
,” in
Proceedings of BeBeC
, February 19–20, Berlin, Germany, pp.
1
8
.
11.
Knapp
,
C. H.
, and
Carter
,
G. C.
(
1976
). “
The generalized correlation method for estimation of time delay
,”
IEEE Trans. Acoust. Speech Signal Process.
24
,
320
327
.
12.
Marinescu
,
R.-S.
,
Buzo
,
A.
,
Cucu
,
H.
, and
Burileanu
,
C.
(
2013
). “
Applying the accumulation of cross-power spectrum technique for traditional generalized cross-correlation time delay estimation
,”
Int. J. Adv. Telecommun.
6
,
98
108
.
13.
Noël
,
C.
,
Planeau
,
V.
, and
Habault
,
D.
(
2006
). “
A new temporal method for the identification of source directions in a reverberant hall
,”
J. Sound Vib.
296
(
3
),
518
538
.
14.
Oerlemans
,
S.
, and
Schepers
,
J. G.
(
2009
). “
Prediction of wind turbine noise and validation against experiment
,”
Int. J. Aeroacoust.
8
(
62
),
555
584
.
15.
Omologo
,
M.
, and
Svaizer
,
P.
(
1994
). “
Acoustic event localization using a crosspower-spectrum phase based technique
,” in
Proceedings of ICASSP'94
, April 19–22, Adelaide, Australia.
16.
Padois
,
T.
(
2018
). “
Acoustic source localization based on the generalized cross-correlation and the generalized mean with few microphones
,”
J. Acoust. Soc. Am.
143
(
5
),
EL393
EL398
.
17.
Padois
,
T.
, and
Berry
,
A.
(
2017
). “
Application of acoustic imaging techniques on snowmobile pass-by noise
,”
J. Acoust. Soc. Am.
141
(
2
),
EL134
EL139
.
18.
Padois
,
T.
,
Doutres
,
O.
,
Sgard
,
F.
, and
Berry
,
A.
(
2016
). “
On the use of geometric and harmonic means with the generalized cross-correlation in the time domain to improve noise source maps
,”
J. Acoust. Soc. Am.
140
(
1
),
EL56
EL61
.
19.
Padois
,
T.
,
Doutres
,
O.
,
Sgard
,
F.
, and
Berry
,
A.
(
2017a
). “
Time domain localization technique with sparsity constraint for imaging acoustic sources
,”
Mech. Syst. Signal Process.
94
,
84
93
.
20.
Padois
,
T.
,
Sgard
,
F.
,
Doutres
,
O.
, and
Berry
,
A.
(
2017b
). “
Acoustic source localization using a polyhedral microphone array and an improved generalized cross-correlation technique
,”
J. Sound Vib.
386
(
6
),
82
99
.
21.
Quaegebeur
,
N.
,
Padois
,
T.
,
Gauthier
,
P.-A.
, and
Masson
,
P.
(
2016
). “
Enhancement of time-domain acoustic imaging based on generalized cross-correlation and spatial weighting
,”
Mech. Syst. Signal Process.
75
,
512
524
.
22.
Rabinkin
,
D. V.
,
Renomeron
,
R. J.
,
Dahl
,
A. J.
,
French
,
J. C.
,
Flanagan
,
J. L.
, and
Bianchi
,
M.
(
1996
). “
DSP implementation of source location using microphone arrays
,”
Proc. SPIE
2846
,
88
99
.
23.
Shen
,
M.
, and
Liu
,
H.
(
2009
). “
A modified cross power-spectrum phase method based on microphone array for acoustic source localization
,” in
Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics
, October 11–14, San Antonio, TX, pp.
1286
1291
.
24.
Velasco
,
J.
,
Pizarro
,
D.
, and
Macias-Guarasa
,
J.
(
2012
). “
Source localization with acoustic sensor arrays using generative model based fitting with sparse constraints
,”
Sensors
12
,
13781
13812
.
You do not currently have access to this content.