Sound onsets are commonly considered to play a privileged role in the identification of musical instruments, but the underlying acoustic features remain unclear. By using sounds resynthesized with and without rapidly varying transients (not to be confused with the onset as a whole), this study set out to specify precisely the role of transients and quasi-stationary components in the perception of musical instrument sounds. In experiment 1, listeners were trained to identify ten instruments from 250 ms sounds. In a subsequent test phase, listeners identified instruments from 64 ms segments of sounds presented with or without transient components, either taken from the onset, or from the middle portion of the sounds. The omission of transient components at the onset impaired overall identification accuracy only by 6%, even though experiment 2 suggested that their omission was discriminable. Shifting the position of the gate from the onset to the middle portion of the tone impaired overall identification accuracy by 25%. Taken together, these findings confirm the prominent status of onsets in musical instrument identification, but suggest that rapidly varying transients are less indicative of instrument identity compared to the relatively slow buildup of sinusoidal components during onsets.

1.
Clark
,
M.
, Jr.
,
Luce
,
D.
,
Abrams
,
R.
,
Schlossberg
,
H.
, and
Rome
,
J.
(
1963
). “
Preliminary experiments on the aural significance of parts of tones of orchestral instruments and on choral tones
,”
J. Audio Eng. Soc.
11
(
1
),
45
54
.
2.
Daudet
,
L.
(
2005
). “
A review on techniques for the extraction of transients in musical signals
,” in
International Symposium on Computer Music Modeling and Retrieval
(
Springer
,
New York)
, pp.
219
232
.
3.
Elliott
,
C. A.
(
1975
). “
Attacks and releases as factors in instrument identification
,”
J. Res. Music Ed.
23
(
1
),
35
40
.
4.
Giordano
,
B. L.
,
Rocchesso
,
D.
, and
McAdams
,
S.
(
2010
). “
Integration of acoustical information in the perception of impacted sound sources: The role of information accuracy and exploitability
,”
J. Exp. Psychol.
36
(
2
),
462
476
.
5.
Grey
,
J. M.
(
1977
). “
Multidimensional perceptual scaling of musical timbres
,”
J. Acoust. Soc. Am.
61
(
5
),
1270
1277
.
6.
Handel
,
S.
(
1995
). “
Timbre perception and auditory object identification
,” in
Hearing
, edited by
B. C.
Moore
(
Academic Press
,
San Diego, CA
), Chap. 12, pp.
425
461
.
7.
Iverson
,
P.
, and
Krumhansl
,
C. L.
(
1993
). “
Isolating the dynamic attributes of musical timbre
,”
J. Acoust. Soc. Am.
94
(
5
),
2595
2603
.
8.
Levine
,
S. N.
, and
Smith
,
J. O.
(
2007
). “
A compact and malleable sines+transients+noise model for sound
,” in
Analysis, Synthesis, and Perception of Musical Sounds
, edited by
J. W.
Beauchamp
(
Springer
,
New York, NY
), pp.
145
174
.
9.
McDermott
,
J.
, and
Simoncelli
,
E. P.
(
2011
). “
Sound texture perception via statistics of the auditory periphery: Evidence from sound synthesis
,”
Neuron
71
,
926
940
.
10.
Müller
,
M.
(
2015
).
Fundamentals of Music Processing: Audio, Analysis, Algorithms, Applications
(
Springer
,
Heidelberg, Germany
).
11.
Ogg
,
M.
,
Slevc
,
L. R.
, and
Idsardi
,
W. J.
(
2017
). “
The time course of sound category identification: Insights from acoustic features
,”
J. Acoust. Soc. Am.
142
(
6
),
3459
3473
.
12.
Overath
,
T.
,
McDermott
,
J. H.
,
Zarate
,
J. M.
, and
Poeppel
,
D.
(
2015
). “
The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts
,”
Nature Neurosci.
18
(
6
),
903
911
.
13.
Ponsot
,
E.
,
Arias
,
P.
, and
Aucouturier
,
J.-J.
(
2018
). “
Uncovering mental representations of smiled speech using reverse correlation
,”
J. Acoust. Soc. Am.
143
(
1
),
EL19
EL24
.
14.
Pressnitzer
,
D.
,
Agus
,
T. R.
, and
Suied
,
C.
(
2013
). “
Acoustic timbre recognition
,” in
Encyclopedia of Computational Neuroscience: Springer Reference
, edited by
D.
Jaeger
and
R.
Jung
(
Springer
,
Heidelberg, Germany
), pp.
1
6
.
15.
Reuter
,
C.
(
1995
).
Der Einschwingvorgang nichtperkussiver Musikinstrumente (The Onset Process of Non-Percussive Musical Instruments)
(
Peter Lang Frankfurt/M
).
16.
Robinson
,
K.
, and
Patterson
,
R. D.
(
1995
). “
The duration required to identify the instrument, the octave, or the pitch chroma of a musical note
,”
Music Percept.
13
(
1
),
1
15
.
17.
Saldanha
,
E.
, and
Corso
,
J. F.
(
1964
). “
Timbre cues and the identification of musical instruments
,”
J. Acoust. Soc. Am.
36
(
11
),
2021
2026
.
18.
Schaeffer
,
P.
(
2017
).
Treatise on Musical Objects: An Essay Across Disciplines
(
University of California Press
,
Oakland, CA
).
19.
Serra
,
X.
, and
Smith
,
J. O.
(
1990
). “
Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic plus stochastic decomposition
,”
Computer Music J.
14
(
4
),
12
24
.
20.
Siedenburg
,
K.
, and
Doclo
,
S.
(
2017
). “
Iterative structured shrinkage algorithms for stationary/transient audio separation
,” in
Proceedings of the 20th International Conference on Digital Audio Effects (DAFX-20)
,
Edinburgh, United Kingdom
(
September 5–8
).
21.
Siedenburg
,
K.
, and
Dörfler
,
M.
(
2011
). “
Structured sparsity for audio signals
,” in
Proceedings of the 14th International Conference on Digital Audio Effects (DAFx-11)
,
Paris, France
.
22.
Siedenburg
,
K.
,
Jones-Mollerup
,
K.
, and
McAdams
,
S.
(
2016
). “
Acoustic and categorical dissimilarity of musical timbre: Evidence from asymmetries between acoustic and chimeric sounds
,”
Front. Psychol.
6
(
1977
),
1
17
.
23.
Siedenburg
,
K.
, and
McAdams
,
S.
(
2017
). “
Four distinctions for the auditory ‘wastebasket’ of timbre
,”
Front. Psychol.
8
(1747),
1
4
.
24.
Suied
,
C.
,
Agus
,
T. R.
,
Thorpe
,
S. J.
,
Mesgarani
,
N.
, and
Pressnitzer
,
D.
(
2014
). “
Auditory gist: Recognition of very short sounds from timbre cues
,”
J. Acoust. Soc. Am.
135
(
3
),
1380
1391
.
25.
Thoret
,
E.
,
Depalle
,
P.
, and
McAdams
,
S.
(
2016
). “
Perceptually salient spectrotemporal modulations for recognition of sustained musical instruments
,”
J. Acoust. Soc. Am.
140
(
6
),
EL478
EL483
.
26.
Thoret
,
E.
,
Depalle
,
P.
, and
McAdams
,
S.
(
2017
). “
Perceptually salient regions of the modulation power spectrum for musical instrument identification
,”
Front. Psychol.
8
(587),
1
10
.
27.
Zaunschirm
,
M.
,
Reiss
,
J. D.
, and
Klapuri
,
A.
(
2012
). “
A sub-band approach to modification of musical transients
,”
Comp. Music J.
36
(
2
),
23
36
.

Supplementary Material

You do not currently have access to this content.