It has been long recognized that the single-number quantities presented in the standard ISO 717-2 [(2013) International Organization for Standardization] do not correlate especially well with the subjective judgment of living impact sound sources directed to the floors. The aim of this study was to find single-number quantities which are well associated with the subjective annoyance caused by different impact sounds. Experimental data of laboratory measurements of impact sound insulation of floors and a psychoacoustic experiment was used [Kylliäinen et al. (2017). Acta Acust. Acust. 103, 236–251]. The five studied impact sound types were walking with hard shoes, socks, and soft shoes, super ball bouncing, and chair moving. A fundamental requirement was that the single-number quantities can be expressed as the sum of L′n,w or L′nT,w and a spectrum adaptation term. Reference spectra were derived by the means of a mathematical optimization method. Reference spectra for each sound type were defined separately. An optimized reference spectrum based on all five sound types explained the annoyance of these sound types reasonably well (r2 = 0.93) and better than any of the standardized single number quantities (e.g., r2 = 0.86 for Ln,w + CI,50-2500).

1.
Bazaraa
,
M. S.
,
Sherali
,
H. D.
, and
Shetty
,
C. M.
(
2013
).
Nonlinear Programming: Theory and Algorithms
(
Wiley
,
New York
), pp.
576
589
.
2.
Bodlund
,
K.
(
1985
). “
Alternative reference curves for evaluation of the impact sound insulation between dwellings
,”
J. Sound and Vibration
102
,
381
402
.
3.
DIN 52211
(
1953
). “Schalldämmzahl und Norm-Trittschallpegel” (“
Sound insulation and impact sound insulation level
”) (Deutsches Institut für Normung, Berlin, Germany).
4.
Fasold
,
W.
(
1965
). “Untersuchungen über den Verlauf der Sollkurve für den Trittschallschutz im Wohnungsbau” (“
Studies on the development of the reference curve for impact sound insulation of buildings
”),
Acustica
15
,
271
284
.
5.
Gastell
,
A.
(
1936
). “Schalldämmmessungen in der Praxis und Vorschläge zur Normung des Schallschutzes von Wohnungstrennwänden und Decken” (“
Sound insulation measurements in the practice and suggestions for standardization of sound insulation of walls and floors in housing
”),
Akust. Z.
1
,
24
35
.
6.
Gerretsen
,
E.
(
1976
). “
A new system for rating impact sound insulation
,”
Appl. Acoust.
9
(
4
),
247
263
.
7.
Gover
,
B. N.
,
Bradley
,
J. S.
,
Schoenwald
,
S.
, and
Zeitler
,
B.
(
2011
). “
Subjective ranking of footstep and low-frequency impact sounds on lightweight wood-framed floor assemblies
,” in
Proceedings of the 6th Forum Acusticum
, Aalborg, Denmark, June 26–July 1.
8.
Gösele
,
K.
(
1949
). “Zur Meßmethodik der Trittschalldämmung” (“
On the measurement methodology of impact sound insulation
”),
Gesundheitsingenieur
70
,
66
70
.
9.
Gösele
,
K.
(
1965
). “Zur Bewertung der Schalldämmung von Bauteilen nach Sollkurven” (“
On the rating of impact sound insulation of structures according to the reference curve
”),
Acustica
15
,
264
270
.
10.
Hagberg
,
K.
(
2010
). “
Evaluating field measurements of impact sound
,”
Build. Acoust.
17
,
105
128
.
11.
Hofbauer
,
G.
(
1935
). “
Ein Trittschallmaßstab
,”
Gesundheitsingenieur
58
,
109
111
.
12.
Hongisto
,
V.
,
Mäkilä
,
M.
,
Haapakangas
,
A.
,
Hakala
,
J.
,
Hyönä
,
J.
, and
Kylliäinen
,
M.
(
2013
). “
Acoustic satisfaction in multi-storey buildings built after 1950—Preliminary results of a field survey
,” paper 835,
Internoise 2013
, 15–18 September, Innsbruck, Austria.
13.
Hongisto
,
V.
,
Oliva
,
D.
, and
Keränen
,
J.
(
2014
). “
Subjective and objective rating of airborne sound insulation—Living sounds
,”
Acta Acust. Acust.
100
,
848
863
.
14.
ISO
(
1968
). “
ISO R717:1986. Rating of sound insulation for dwellings
” (International Organization for Standardization, Geneva, Switzerland).
15.
ISO
(
1971
). “
ISO R1996:1971. Acoustics—Assessment of noise with respect to community response
” (International Organization for Standardization, Geneva, Switzerland).
16.
ISO
(
1998
). “
ISO 140-7:1998. Acoustics—Measurement of sound insulation in buildings and of building elements—Part 7: Field measurements of impact sound insulation of floors
” (International Organization for Standardization, Geneva, Switzerland).
17.
ISO
(
2013
). “
ISO 717-2:2013. Acoustics—Rating of sound insulation in buildings and of building elements—Part 2: Impact sound insulation
” (International Organization for Standardization, Geneva, Switzerland).
18.
ISO
(
2015
). “
ISO 16283-2:2015 Acoustics—Field measurement of sound insulation in buildings and of building elements—Part 2: Impact sound insulation
” International Organization for Standardization, Geneva, Switzerland.
19.
Jeon
,
J. Y.
,
Ryu
,
J. K.
,
Jeong
,
J. H.
, and
Tachibana
,
H.
(
2006
). “
Review of the impact ball in evaluating floor impact sound
,”
Acta Acust. Acust.
92
,
777
786
.
20.
Kylliäinen
,
M.
,
Hongisto
,
V.
,
Oliva
,
D.
, and
Rekola
,
J.
(
2017
). “
Subjective and objective rating of impact sound insulation of a concrete floor with various coverings
,”
Acta Acust. Acust.
103
(
2
),
236
251
.
21.
Kylliäinen
,
M.
,
Lietzén
,
J.
,
Kovalainen
,
V.
, and
Hongisto
,
V.
(
2015
). “
Correlation between single number-quantities of impact sound insulation and noise ratings of walking on concrete floors
,”
Acta Acust. Acust.
101
(
5
),
975
985
.
22.
Lee
,
P. J.
,
Kim
,
J. H.
, and
Jeon
,
J. Y.
(
2009
). “
Psychoacoustical characteristics of impact ball sounds in concrete floors
,”
Acta Acust. Acust.
95
,
707
717
.
23.
Lindblad
,
S.
(
1968
). “
Impact sound characteristics of resilient floor coverings
,” Lund Institute of Technology, Division of Building Technology, Bulletin 2, Lund.
24.
Ljunggren
,
F.
,
Simmons
,
C.
, and
Hagberg
,
K.
(
2014
). “
Correlation between sound insulation and occupants' perception—Proposal of alternative single number rating of impact sound
,”
Appl. Acoust.
85
,
57
68
.
25.
Mariner
,
T.
(
1964
). “
Technical problems in impact noise testing
,”
Build. Res.
1
,
53
60
.
26.
Mariner
,
T.
, and
Hehmann
,
H. W. W.
(
1967
). “
Impact-noise rating of various floors
,”
J. Acoust. Soc. Am.
41
,
206
214
.
27.
Nilsson
,
E.
, and
Hammer
,
P.
(
2001
). “
Subjective evaluation of impact sound transmission through floor structures
,” in
Proceedings of the 17th International Congresses on Acoustics
, Rome, September 2–7.
28.
Olynyk
D.
, and
Northwood
T. D.
(
1968
). “
Assessment of footstep noise through wood-joist and concrete floors
,”
J. Acoust. Soc. Am.
43
,
730
733
.
29.
Rasmussen
,
B.
, and
Machimbarrena
,
M.
(
2014
). Building Acoustics throughout Europe—Volume 1: Towards a Common Framework In Building Acoustics throughout Europe (COST Action TU0901, Brussels).
30.
Rindel
,
J. H.
(
2017
). “
A comment on the importance of low frequency airborne sound insulation between dwellings
,”
Acta Acust. Acust.
103
,
164
168
.
31.
Ryu
,
J. K.
,
Sato
,
H.
,
Kurakata
,
K.
,
Hiramitsu
,
A.
,
Tanaka
,
M.
, and
Hirota
,
T.
(
2011
). “
Relation between annoyance and single-number quantities for rating heavy-weight floor impact sound insulation in wooden houses
,”
J. Acoust. Soc. Am.
129
,
3047
3055
.
32.
Scholl
,
W.
(
2011
). “
Revision of ISO 717: Why not use impact sound reduction indices instead of impact sound pressure levels?
,”
Acta Acust. Acust.
97
,
503
508
.
33.
Schultz
,
T. J.
(
1976
). “
Alternative test method for evaluating impact noise
,”
J. Acoust. Soc. Am.
60
,
645
655
.
34.
Späh
,
M.
,
Hagberg
,
K.
,
Bartlomé
,
O.
,
Weber
,
L.
,
Leistner
,
P.
, and
Liebl
,
A.
(
2013
). “
Subjective and objective evaluation of impact noise sources in wooden buildings
,”
Build. Acoust.
20
,
193
214
.
35.
Takala
,
J.
, and
Kylliäinen
,
M.
(
2013
). “
Room acoustics and background noise levels in furnished Finnish dwellings
,” in
Proceedings of the 42nd International Congress on Noise Control Engineering, Internoise 2013
, Innsbruck, September 15–18, 2013, paper no. 207.
36.
Virjonen
,
P.
,
Hongisto
,
V.
, and
Oliva
,
D.
(
2016
). “
Optimized single-number quantity for rating the airborne sound insulation of constructions: Living sounds
,”
J. Acoust. Soc. Am.
140
(
6
),
4428
4436
.
37.
Watters
,
B. G.
(
1968
). “
Impact noise characteristics of female hard heeled foot traffic
,”
J. Acoust. Soc. Am.
37
,
619
630
.
38.
Zeitler
,
B.
,
Schoenwald
,
S.
, and
Gover
,
B.
(
2013
). “
On the relevance of impact source impedance at low frequencies
,” in
Proceedings of Meetings on Acoustics 19
, paper 4pAAb3.

Supplementary Material

You do not currently have access to this content.