The diffraction of a spherical sound wave by a thin hard half-plane is considered. The total field at any position in the space surrounding the edge of the half-plane is composed of three components, two of which are expressed from pure geometrical considerations, and a third component which seems to originate from fictive sound sources situated on the edge of the half plane. This paper takes the expression of the edge-diffracted field as formulated in the Biot-Tolstoy theory of diffraction for the case of a doublet sound signal emanating from the sound source [Biot and Tolstoy (1957). J. Acoust. Soc. Am. 29, 381–391] but rearranged later in a more tractable form by Medwin [(1981). J. Acoust. Soc. Am. 69, 1060–1064] for the more general case of a Dirac-like pulse. Hence a development in the frequency domain of the Fourier transform of the exact expression of the edge-diffracted field in the time domain takes into consideration a part with known special mathematical functions, and a part containing a serial development. This latter also expressed in some special mathematical functions, converges quite rapidly to the numerical Fourier transform of the exact time-domain expression. The presented solution may be used as a good approximation in simulations and in real case predictions of sound attenuation by thin hard barriers.

1.
Biot
,
M. A.
, and
Tolstoy
I.
(
1957
). “
Formulation of wave propagation in infinite media by normal coordinates with an application to diffraction
,”
J. Acoust. Soc. Am.
29
,
381
391
.
2.
Bouwkamp
,
C. J.
(
1954
). “
Diffraction theory
,”
Rep. Prog. Phys.
17
,
35
100
.
3.
Carslaw
,
H. S.
(
1899
). “
Some multi-form solutions of the partial differential equations of physical mathematics and their applications
,”
Proc. R. Soc. London
30
,
121
161
.
4.
Carslaw
,
H. S.
(
1920
). “
Diffraction of waves by a wedge of any angle
,”
Proc. London Math. Soc.
18
,
291
306
.
5.
Chu
,
D.
,
Stanton
,
T. K.
, and
Pierce
A. D.
(
2007
). “
Higher-order acoustic diffraction by edges of finite thickness
,”
J. Acoust. Soc. Am.
122
,
3177
3194
.
6.
Clemmow
,
P. C.
(
1950
). “
A note on the diffraction of a cylindrical wave by a perfectly conducting half-plane
,”
Quart. J. Mech. Appl. Math.
3
,
377
384
.
7.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
(
2007
).
Table of Integrals, Series and Products
, 7th ed. (
Academic
,
New York
).
8.
Hadden
,
W. T.
, and
Pierce
,
A. D.
(
1981
). “
Sound diffraction around screens and wedges for arbitrary point source locations
,”
J. Acoust. Soc. Am.
69
,
1266
1276
.
9.
Hadden
,
W. T.
, and
Pierce
A. D.
(
1982
). “
Erratum: ‘Sound diffraction around screens and wedges for arbitrary point source locations,’ ”
J. Acoust. Soc. Am.
71
,
1290
.
10.
Isei
,
T.
,
Embleton
,
T. F. W.
, and
Piercy
,
J. E.
(
1980
). “
Noise reduction by barriers on finite impedance ground
,”
J. Acoust. Soc. Am.
67
,
46
58
.
11.
Jonasson
,
H. G.
(
1972
). “
Sound reduction by barriers on the ground
,”
J. Sound Vib.
22
,
113
126
.
12.
Lau
,
S. K.
, and
Tang
,
S. K.
(
2009
). “
Performance of a noise barrier within an enclosed space
,”
Appl. Acoust.
70
,
50
57
.
13.
L'Espérance
,
A.
(
1989
). “
The insertion loss of finite length barriers on the ground
,”
J. Acoust. Soc. Am.
86
,
179
183
.
14.
MacDonald
,
H. M.
(
1915
). “
A class of diffraction problems
,”
Proc. London Math. Soc.
14
,
410
427
.
15.
Medwin
,
H.
(
1981
). “
Shadowing by finite noise barriers
,”
J. Acoust. Soc. Am.
69
,
1060
1064
.
16.
Menounou
,
P.
, and
Nikolaou
P.
(
2017
). “
Analytical model for predicting edge diffraction in the time domain
,”
J. Acoust. Soc. Am.
142
,
3580
3592
.
17.
Muradali
,
A.
, and
Fyfe
,
K. R.
(
1998
). “
A study of 2D and 3D barrier insertion loss using improved diffraction-based methods
,”
Appl. Acoust.
53
,
49
75
.
18.
Nicolas
J.
,
Embleton
,
T. F. W.
, and
Piercy
J. E.
(
1983
). “
Precise model measurement versus theoretical prediction of barrier insertion loss in presence of the ground
,”
J. Acoust. Soc. Am.
73
,
44
54
.
19.
Ouis
D.
(
2002
). “
Diffraction by a hard half-plane: Useful approximations to an exact formulation
,”
J. Sound Vib.
252
,
191
221
.
20.
Prudnikov
,
A. P.
,
Brychkov
,
Yu. A.
, and
Marichev
,
O. I.
(
1986
).
Elementary Functions
, Vol. I of Integrals and Series (
Gordon & Breach Science
,
New York
).
21.
Sommerfeld
,
A.
(
1896
). “
Mathematische Theorie der Diffraction
,”
Math. Ann.
37
,
317
374
.
22.
Spanier
,
J.
, and
Oldham
,
K. B.
(
1987
).
An Atlas of Functions
(
Springer-Verlag
,
Berlin
).
23.
Svensson
,
U. P.
, and
Calamia
P. T.
(
2006
). “
Edge-diffraction impulse responses near specular-zone and shadow-zone boundaries
,”
Acta Acust. Acust.
92
,
501
512
.
24.
Svensson
,
U. P.
,
Fred
,
R. I.
, and
Vanderkooy
,
J.
(
1999
). “
An analytic secondary source model of edge diffraction impulse responses
,”
J. Acoust. Soc. Am.
106
,
2331
2344
.
25.
Thomasson
,
S. I.
(
1978
). “
Diffraction by a screen above an impedance boundary
,”
J. Acoust. Soc. Am.
63
,
1768
1781
.
26.
Torres
,
R. R.
,
Svensson
,
U. P.
, and
Kleiner
,
M.
(
2001
). “
Computation of edge diffraction for more accurate room acoustics auralization
,”
J. Acoust. Soc. Am.
109
,
600
610
.
27.
Vorländer
,
M.
(
2013
). “
Computer simulations in room acoustics: Concepts and uncertainties
,”
J. Acoust. Soc. Am.
133
,
1203
1213
.
28.
Wolfram Mathematica
(
2015
). “
Computing system
,” version 10.2.
You do not currently have access to this content.