Detecting marine mammal vocalizations in underwater acoustic environments and classifying them to species level is typically an arduous manual analysis task for skilled bioacousticians. In recent years, machine learning and other automated algorithms have been explored for quickly detecting and classifying all sound sources in an ambient acoustic environment, but many of these still require a large training dataset compiled through time-intensive manual pre-processing. Here, an application of the signal decomposition technique Empirical Mode Decomposition (EMD) is presented, which does not require a priori knowledge and quickly detects all sound sources in a given recording. The EMD detection process extracts the possible signals in a dataset for minimal quality control post-processing before moving onto the second phase: the EMD classification process. The EMD classification process uniquely identifies and labels most sound sources in a given environment. Thirty-five recordings containing different marine mammal species and mooring hardware noises were tested with the new EMD detection and classification processes. Ultimately, these processes can be applied to acoustic index development and refinement.

1.
Adam
,
O.
(
2006
). “
Advantages of the Hilbert Huang transform for marine mammals signals analysis
,”
J. Acoust. Soc. Am.
120
(
5
),
2965
2973
.
2.
Adam
,
O.
(
2008
). “
Segmentation of killer whale vocalizations using the Hilbert-Huang transform
,”
EURASIP J. Adv. Signal Process.
10
,
245936
.
3.
Bittle
,
M.
, and
Duncan
,
A.
(
2013
). “
A review of current marine mammal detection and classification algorithms for use in automated passive acoustic monitoring
,” in
Proceedings of Acoustics, Australian Acoustical Society
, Victor Harbor (November 17–20, 2013), pp.
1
8
.
4.
Boelman
,
N. T.
,
Asner
,
G. P.
,
Hart
,
P. J.
, and
Martin
,
R. E.
(
2007
). “
Multi-trophic invasion resistance in Hawaii: Bioacoustics, field surveys, and airborne remote sensing
,”
Ecol. Appl.
17
,
2137
2144
.
5.
Fairbrass
,
A. J.
,
Rennert
,
P.
,
Williams
,
C.
,
Titheridge
,
H.
, and
Jones
,
K. E.
(
2017
). “
Biases of acoustic indices measuring biodiversity in urban areas
,”
Ecol. Ind.
83
,
169
177
.
6.
Flandrin
,
P.
,
Rilling
,
G.
, and
Goncalves
,
P.
(
2004
). “
Empirical mode decomposition as a filter bank
,”
IEEE Signal Process. Lett.
11
,
112
114
7.
Herzig
,
D. L.
(
2014
). “
Clicks, whistles and pulses: Passive and active signal use in dolphin communication
,”
Acta Astronautica
105
,
534
537
.
8.
Huang
,
N. E.
(
2005
).
“Introduction to the Hilbert–Huang transform and its related mathematical problems,”
in
Hilbert-Huang Transform and its Applications
(
World Scientific Publishing Company
,
London, England
), pp.
1
26
.
9.
Huang
,
N. E.
(
2014
).
Hilbert-Huang Transform and its Applications
(
World Scientific Publishing Company
,
London, England
), Vol. 16.
10.
Kasten
,
E. P.
,
Gage
,
S. H.
,
Fox
,
J.
, and
Joo
,
W.
(
2012
). “
The remote environmental assessment laboratory's acoustic library: An archive for studying soundscape ecology
,”
Ecol. Inf.
12
,
50
67
.
11.
Lellouch
,
L.
,
Pavoine
,
S.
,
Jiguet
,
F.
,
Glotin
,
H.
, and
Sueur
,
J.
(
2014
). “
Monitoring temporal change of bird communities with dissimilarity acoustic indices
,”
Methods Ecol. Evol.
5
(
6
),
495
505
.
12.
Liu
,
W.
,
Wang
,
Z.
,
Liu
,
X.
,
Zeng
,
N.
,
Liu
,
Y.
, and
Alsaadi
,
F. E.
(
2017
). “
A survey of deep neural network architectures and their applications
,”
Neurocomputing
234
,
11
26
.
13.
Ni
,
S.-H.
,
Xie
,
W.-C.
, and
Pandey
,
M.
(
2011
). “
Application of Hilbert-Huang transform in generating spectrum-compatible earthquake time histories
,”
ISRN Signal Process.
2011
,
1
17
.
14.
Nystuen
,
J. A.
(
1998
). “
Temporal sampling requirements for autonomous rain gauges
,”
J. Atmos. Oceanic Tech.
15
,
1254
1261
.
15.
Pan
,
W.
,
Shen
,
X.
, and
Liu
,
B.
(
2013
). “
Cluster analysis: Unsupervised learning via supervised learning with a non-convex penalty
,”
Machine Learn. Res.
14
,
1865
1889
.
16.
Parks
,
S. E.
,
Miksis-Olds
,
J. L.
, and
Denes
,
S. L.
(
2014
). “
Assessing marine ecosystem acoustic diversity across ocean basins
,”
Ecol. Inf.
21
,
81
88
.
17.
Parsons
,
M.
,
Erbe
,
C.
,
McCauley
,
R.
,
McWilliam
,
J.
,
Marley
,
S.
,
Gavrilov
,
A.
, and
Parnum
,
I.
(
2016
). “
Long-term monitoring of soundscapes and deciphering a usable index: Examples of fish choruses from Australia
,”
Proc. Mtgs. Acoust.
27
(
1
),
010023
.
18.
Peng
,
Z. K.
,
Tse
,
P. W.
, and
Chu
,
F. L.
(
2005
). “
A comparison study of improved Hilbert–Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing
,”
Mech. Syst. Signal Process.
19
,
974
988
.
19.
Pieretti
,
N.
,
Farina
,
A.
, and
Morri
,
D.
(
2011
). “
A new methodology to infer the singing activity of an avian community: The Acoustic Complexity Index (ACI)
,”
Ecol. Indic.
11
,
868
873
.
20.
Rilling
,
G.
, and
Flandrin
,
P.
(
2006
). “
On the influence of sampling on the Empirical Mode Decomposition
,” in
IEEE International Conference on Acoustics Speech and Signal Processing Proceedings
.
21.
Stork
,
M.
(
2012
). “
Hilbert-Huang transform and its applications in engineering and biomedical signal analysis
,” in
Recent Researches in Circuits and Systems
, Recent Advances in Electrical Engineering Series 3 (
WSEAS Press
).
22.
Sueur
,
J.
,
Farina
,
A.
,
Gasc
,
A.
,
Pieretti
,
N.
, and
Pavoine
,
S.
(
2014
). “
Acoustic indices for biodiversity assessment and landscape investigation
,”
Acta Acust. Acust.
100
,
772
781
.
23.
Sueur
,
J.
,
Pavoine
,
S.
,
Hamerlynck
,
O.
, and
Duvail
,
S.
(
2008
). “
Rapid acoustic survey for biodiversity appraisal
,”
PLoS One
3
(
12
),
1
9
.
26.
Towsey
,
M.
,
Wimmer
,
J.
,
Williamson
,
I.
, and
Roe
,
P.
(
2013
). “
The use of acoustic indices to determine avian species richness in audio-recordings of the environment
,”
Ecol. Inf.
21
,
110
119
.
27.
Villanueva-Rivera
,
L. J.
,
Pijanowski
,
B. C.
,
Doucette
,
J.
, and
Pekin
,
B.
(
2011
). “
A primer of acoustic analysis for landscape ecologists
,”
Landsc. Ecol.
26
,
1233
1246
.
You do not currently have access to this content.