This study provides an argument cautioning against the use of adaptive-beamforming (ABF) techniques in conjunction with a known method for estimating the bottom reflection loss from natural marine ambient noise. This application of ABF has been investigated in the past with rather inconsistent results. Furthermore, no formal proof that ABF algorithms do indeed provide an estimate of the bottom reflection loss is available. This study moves from a recent derivation of the relationship between the bottom reflection coefficient and the Fourier transform of the marine-noise spatial coherence function. The circumstances under which the beamforming operation approximates a discrete Fourier transform (DFT) of the spatial coherence function estimated from array data are analyzed. It is shown that, under certain conditions, conventional beamforming is equivalent to directly computing the DFT of the coherence function, as long as some subtle details are properly taken into account. Furthermore, it is shown that ABF cannot be guaranteed, in general, to perform this operation, and therefore provide an estimate of the bottom reflection coefficient. The conclusions are demonstrated on simulated and measured data.

1.
C.
Ferla
and
F. B.
Jensen
, “
Are current environmental databases adequate for sonar predictions in shallow water?
,” in
Impact of Littoral Environmental Variability on Acoustic Predictions and Sonar Performance
, edited by
N. G.
Pace
and
F. B.
Jensen
(
Springer Science+Business Media, Dordrecht
, the Netherlands,
2002
), pp.
555
562
.
2.
S. E.
Dosso
,
M. L.
Yeremy
,
J. M.
Ozard
, and
N. R.
Chapman
, “
Estimation of ocean-bottom properties by matched-field inversion of acoustic field data
,”
IEEE J. Ocean. Eng.
18
,
232
239
(
1993
).
3.
A.
Caiti
,
S. M.
Jesus
, and
Å.
Kristensen
, “
Geoacoustic seafloor exploration with a towed array in a shallow water area of the Strait of Sicily
,”
IEEE J. Ocean. Eng.
21
,
355
366
(
1996
).
4.
M.
Siderius
,
P. L.
Nielsen
, and
P.
Gerstoft
, “
Range-dependent seabed characterization by inversion of acoustic data from a towed receiver array
,”
J. Acoust. Soc. Am.
112
,
1523
1535
(
2002
).
5.
C. H.
Harrison
and
D. G.
Simons
, “
Geoacoustic inversion of ambient noise: A simple method
,”
J. Acoust. Soc. Am.
112
,
1377
1389
(
2002
).
6.
M.
Siderius
and
C. H.
Harrison
, “
High-frequency geoacoustic inversion of ambient noise data using short arrays
,”
AIP Conf. Proc.
728
,
22
31
(
2004
).
7.
C. H.
Harrison
, “
Sub-bottom profiling using ocean ambient noise
,”
J. Acoust. Soc. Am.
115
,
1505
1515
(
2004
).
8.
J. I.
Arvelo
, “
Robustness and constraints of ambient noise inversion
,”
J. Acoust. Soc. Am.
123
,
679
686
(
2008
).
9.
J. E.
Quijano
,
S. E.
Dosso
,
J.
Dettmer
,
L. M.
Zurk
,
M.
Siderius
, and
C. H.
Harrison
, “
Bayesian geoacoustic inversion using wind-driven ambient noise
,”
J. Acoust. Soc. Am.
131
,
2658
2667
(
2012
).
10.
P. L.
Nielsen
,
L.
Muzi
, and
M.
Siderius
, “
Seabed characterization from ambient noise using short arrays and autonomous vehicles
,”
IEEE J. Ocean. Eng.
42
,
1094
1101
(
2017
).
11.
L.
Muzi
,
M.
Siderius
, and
P. L.
Nielsen
, “
Frequency based noise coherence-function extension, and application to passive bottom-loss estimation
,”
J. Acoust. Soc. Am.
140
,
1513
1524
(
2016
).
12.
J. I.
Arvelo
, “
Aggressive adaptive beamforming for ambient noise inversion with a limited-aperture sonar on an autonomous platform
,”
Proc. Mtgs. Acoust.
5
,
055003
(
2008
).
13.
C. H.
Harrison
and
A.
Baldacci
, “
Bottom reflection properties deduced from ambient noise: Simulation of a processing technique
,” Memorandum SM-392, Centre for Maritime Research and Experimentation, La Spezia, Italy (
2002
).
14.
M.
Siderius
,
C. H.
Harrison
, and
M. B.
Porter
, “
A passive fathometer technique for imaging seabed layering using ambient noise
,”
J. Acoust. Soc. Am.
120
,
1315
1323
(
2006
).
15.
P.
Gerstoft
,
W. S.
Hodgkiss
,
M.
Siderius
,
C.-F.
Huang
, and
C. H.
Harrison
, “
Passive fathometer processing
,”
J. Acoust. Soc. Am.
123
,
1297
1305
(
2008
).
16.
S. L.
Means
and
M.
Siderius
, “
Effects of sea-surface conditions on passive fathometry and bottom characterization
,”
J. Acoust. Soc. Am.
126
,
2234
2241
(
2009
).
17.
M.
Siderius
,
H.
Song
,
P.
Gerstoft
,
W. S.
Hodgkiss
,
P.
Hursky
, and
C.
Harrison
, “
Adaptive passive fathometer processing
,”
J. Acoust. Soc. Am.
127
,
2193
2200
(
2010
).
18.
J.
Traer
,
P.
Gerstoft
, and
W. S.
Hodgkiss
, “
Ocean bottom profiling with ambient noise: A model for the passive fathometer
,”
J. Acoust. Soc. Am.
129
,
1825
1836
(
2011
).
19.
V.
Young
, “
Using a vertical line array and ambient noise to obtain measurements of seafloor reflection loss
,” Report SR-410, Centre for Maritime Research and Experimentation, La Spezia, Italy (
2005
).
20.
L.
Muzi
,
M.
Siderius
,
J.
Gebbie
, and
J.
Paddock
, “
On the use of adaptive beam-forming techniques for geoacoustic inversion of marine ambient noise
,” in
Proceedings of MTS/IEEE OCEANS 2010
, Seattle, WA (September 20–23,
2010
).
21.
C. H.
Harrison
, “
Separation of measured noise coherence matrix into Toeplitz and Hankel parts
,”
J. Acoust. Soc. Am.
141
,
2812
2820
(
2017
).
22.
C. H.
Harrison
, “
The ocean noise coherence matrix and its rank
,”
J. Acoust. Soc. Am.
143
,
1689
1703
(
2018
).
23.
L.
Muzi
,
M.
Siderius
,
J.
Quijano
, and
S.
Dosso
, “
High-resolution bottom-loss estimation using the ambient-noise vertical coherence function
,”
J. Acoust. Soc. Am.
137
,
481
491
(
2015
).
24.
C. H.
Harrison
, “
Formulas for ambient noise level and coherence
,”
J. Acoust. Soc. Am.
99
,
2055
2066
(
1996
).
25.
M. J.
Buckingham
, “
A theoretical model of ambient noise in a low-loss, shallow water channel
,”
J. Acoust. Soc. Am.
67
,
1186
1192
(
1980
).
26.
D. R.
Barclay
and
M. J.
Buckingham
, “
Depth dependence of wind-driven, broadband ambient noise in the Philippine Sea
,”
J. Acoust. Soc. Am.
133
,
62
71
(
2013
).
27.
H.
Cox
,
R. M.
Zeskind
, and
M. M.
Owen
, “
Robust adaptive beamforming
,”
IEEE Trans. Acoust., Speech, Signal Process.
35
,
1365
1376
(
1987
).
28.
H.
Krim
and
M.
Viberg
, “
Two decades of array signal processing research: The parametric approach
,”
IEEE Signal Process. Mag.
13
,
67
94
(
1996
).
29.
D. G.
Manolakis
,
V. K.
Ingle
, and
S. M.
Kogon
, “
Array processing
,” in
Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing
, 1st ed., series Artech House Signal Processing Library (
Artech House Inc.
,
Norwood, MA
,
2005
), Chap. 11,
659
671
.
30.
P.
Gerstoft
,
R.
Menon
,
W. S.
Hodgkiss
, and
C. F.
Mecklenbräuker
, “
Eigenvalues of the sample covariance matrix for a towed array
,”
J. Acoust. Soc. Am.
132
,
2388
2396
(
2012
).
31.
S.
Najeem
,
G.
Latha
,
M. C.
Sanjana
, and
A.
Thirunavukkarasu
, “
Reflection loss estimation using shallow water ambient noise in the Arabian Sea off the west coast of India
,”
Ocean Eng.
109
,
603
610
(
2015
).
32.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
, “
Fundamentals of ocean acoustics
,” in
Computational Ocean Acoustics (Modern Acoustics and Signal Processing)
, 2nd ed. (
Springer
,
New York
,
2011
), Chap. 1,
38
50
.
33.
H.
Schmidt
, OASES, Version 3.1
User Guide and Reference Manual
(
Massachusetts Institute of Technology
,
Cambridge, MA
,
2004
).
34.
G. M.
Wenz
, “
Acoustic ambient noise in the ocean: Spectra and sources
,”
J. Acoust. Soc. Am.
34
,
1936
1956
(
1962
).
35.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
, “
Signals in noise
,” in
Computational Ocean Acoustics (Modern Acoustics and Signal Processing)
, 2nd ed. (
Springer
,
New York
,
2011
), Chap. 10,
718
720
.
36.
C. H.
Harrison
, “
Performance and limitations of spectral factorization for ambient noise sub-bottom profiling
,”
J. Acoust. Soc. Am.
118
,
2913
2923
(
2005
).
You do not currently have access to this content.