This paper applies ideas originally developed in the field of acoustics of multiscale porous media to the analytical modeling of dissipative silencers. Analytical models for the long-wavelength acoustical properties of different types of dissipative silencers, such as pod silencers, lined ducts, splitters, and bar silencers, are introduced in this work. Some of these models account for the possibility of using different porous materials in a given silencer. For instance, a model for a splitter silencer comprising baffles made of different porous materials is derived. Examples of the sound transmission behavior of the said types of silencers are presented to evidence that the dissipation of sound energy is largely influenced by pressure diffusion occurring in the porous constituents. The predictions of the analytical models are in good agreement with finite element calculations.

1.
C.
Boutin
,
P.
Royer
, and
J.
Auriault
, “
Acoustic absorption of porous surfacing with dual porosity
,”
Int. J. Solids Struct.
35
,
4709
4737
(
1998
).
2.
X.
Olny
and
C.
Boutin
, “
Acoustic wave propagation in double porosity media
,”
J. Acoust. Soc. Am.
114
,
73
89
(
2003
).
3.
R.
Venegas
and
O.
Umnova
, “
Acoustical properties of double porosity granular materials
,”
J. Acoust. Soc. Am.
130
(
5
),
2765
2776
(
2011
).
4.
R.
Venegas
, “
Microstructure influence on acoustical properties of multiscale porous materials
,” Ph.D. dissertation,
University of Salford, Salford
, UK,
2011
.
5.
F.
Chevillotte
,
L.
Jaouen
, and
F.-X.
Bécot
, “
On the modeling of visco-thermal dissipations in heterogeneous porous media
,”
J. Acoust. Soc. Am.
138
(
6
),
3922
3929
(
2015
).
6.
R.
Venegas
and
O.
Umnova
, “
Influence of sorption on sound propagation in granular activated carbon
,”
J. Acoust. Soc. Am.
140
(
2
),
755
766
(
2016
).
7.
C.
Boutin
and
R.
Venegas
, “
Assessment of the effective parameters of dual porosity deformable media
,”
Mech. Mater.
102
,
26
46
(
2016
).
8.
R.
Venegas
and
C.
Boutin
, “
Acoustics of sorptive porous materials
,”
Wave Motion
68
,
162
181
(
2017
).
9.
R.
Venegas
,
C.
Boutin
, and
O.
Umnova
, “
Acoustics of multiscale sorptive porous materials
,”
Phys. Fluids
29
(
8
),
082006
(
2017
).
10.
R.
Venegas
and
C.
Boutin
, “
Acoustics of permeable heterogeneous materials with local non-equilibrium pressure states
,”
J. Sound Vib.
418
,
221
239
(
2018
).
11.
R.
Venegas
and
C.
Boutin
, “
Enhancing sound attenuation in permeable heterogeneous materials via diffusion processes
,”
Acta Acust. united Acust.
104
(4),
623
635
(
2018
).
12.
M. L.
Munjal
,
Acoustics of Ducts and Mufflers
, 2nd ed. (
Wiley
,
New York
,
2014
), p.
416
.
13.
J.-L.
Auriault
,
C.
Boutin
, and
C.
Geindreau
,
Homogenization of Coupled Phenomena in Heterogeneous Media
(
Wiley-ISTE
,
London
,
2009
), p.
476
.
14.
M. L.
Munjal
, “
Analysis and design of pod silencers
,”
J. Sound Vib.
262
,
497
507
(
2003
).
15.
S. N.
Panigrahi
and
M. L.
Munjal
, “
Comparison of various methods for analyzing lined circular ducts
,”
J. Sound Vib.
285
,
905
923
(
2005
).
16.
F. P.
Mechel
, “
Theory of baffle-type silencers
,”
Acustica
70
,
93
111
(
1990
).
17.
F. P.
Mechel
, “
Numerical results to the theory of baffle-type silencers
,”
Acustica
72
,
7
20
(
1990
).
18.
A.
Cummings
and
R. J.
Astley
, “
Finite element computation of attenuation in bar-silencers and comparison with measured data
,”
J. Sound Vib.
196
(
3
),
351
369
(
1996
).
19.
B.
Nennig
,
R.
Binois
,
E.
Perrey-Debain
, and
N.
Dauchez
, “
A homogenization method used to predict the performance of silencers containing parallel splitters
,”
J. Acoust. Soc. Am.
137
(
6
),
3221
3231
(
2015
).
20.
F. P.
Mechel
, “
Modal solutions in circular and annular ducts with locally or bulk reacting lining
,”
Acustica
84
,
201
222
(
1998
).
21.
M. E.
Schaffer
,
A Practical Guide to Noise and Vibration Control for HVAC Systems
(
ASHRAE
,
Atlanta, GA
,
2005
), p.
177
.
22.
H.
Fuchs
,
Applied Acoustics: Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise Control
(
Springer
,
Berlin
,
2009
).
23.
H. J.
Sabine
, “
The absorption of noise in ventilating ducts
,”
J. Acoust. Soc. Am.
12
,
53
57
(
1940
).
24.
I. L.
Ver
, “
A review of the attenuation of sound in straight lined and unlined ductwork of rectangular cross section
,”
ASHRAE Trans.
84
,
122
149
(
1978
).
25.
T. F.
Embleton
, “
Mufflers
,” in
Noise and Vibration Control
, edited by
L.
Beranek
(
McGraw-Hill
,
New York
,
1971
), pp.
362
405
.
26.
F. P.
Mechel
, “
Design criteria for industrial mufflers
,” in
Proceedings of Inter-Noise 75
,
Sendai, Japan
(
August 27–29
,
1975
), pp.
751
760
.
27.
D. A.
Bies
,
C. H.
Hansen
, and
G. E.
Bridges
, “
Sound attenuation in rectangular and circular cross-section ducts with flow and bulk reacting liner
,”
J. Sound Vib.
146
,
47
80
(
1991
).
28.
S. H.
Ko
, “
Theoretical analyses of sound attenuation in acoustically lined flow ducts separated by porous splitters (rectangular, annular, and circular ducts)
,”
J. Sound Vib.
39
(
4
),
471
487
(
1975
).
29.
W.
Frommhold
and
F. P.
Mechel
, “
Simplified methods to calculate the attenuation of silencers
,”
J. Sound Vib.
141
(
1
),
103
125
(
1990
).
30.
R.
Kirby
, “
Simplified techniques for predicting the transmission loss of a circular dissipative silencer
,”
J. Sound Vib.
243
,
403
426
(
2001
).
31.
S. W.
Reinstra
, “
Contributions to the theory of sound propagation in ducts with bulk-reacting lining
,”
J. Acoust. Soc. Am.
77
,
1681
1685
(
1985
).
32.
A.
Craggs
, “
A finite element method for modelling dissipative mufflers with a locally reactive lining
,”
J. Sound Vib.
54
(
2
),
285
296
(
1977
).
33.
R.
Kirby
, “
A comparison between analytic and numerical methods for modelling automotive dissipative silencers with mean flow
,”
J. Sound Vib.
325
,
565
582
(
2009
).
34.
A.
Selamet
,
I. J.
Lee
, and
N. T.
Huff
, “
Acoustic attenuation of hybrid silencers
,”
J. Sound Vib.
262
,
509
527
(
2003
).
35.
R.
Ramakrishnan
and
W. R.
Watson
, “
Design curves for rectangular splitter silencers
,”
Appl. Acoust.
35
,
1
24
(
1992
).
36.
K. U.
Ingard
,
Notes on Sound Absorption Technology
(
Noise Control Foundation
,
New York
,
1994
), p.
354
.
37.
R. J.
Astley
and
A.
Cummings
, “
A finite element scheme for attenuation in ducts lined with porous material: Comparison with experiment
,”
J. Sound Vib.
116
,
239
263
(
1987
).
38.
J. F.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media. Modeling Sound Absorbing Materials
, 2nd ed. (
Wiley
,
Chichester
,
2009
), p.
358
.
39.
J. L.
Auriault
,
L.
Borne
, and
R.
Chambon
, “
Dynamics of porous saturated media, checking of the generalized law of Darcy
,”
J. Acoust. Soc. Am.
77
(
5
),
1641
1650
(
1985
).
40.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
41.
D.
Lafarge
,
P.
Lemarinier
,
J. F.
Allard
, and
V.
Tarnow
, “
Dynamic compressibility of air in porous structures at audible frequencies
,”
J. Acoust. Soc. Am.
102
,
1995
2006
(
1997
).
42.
S. N. Y.
Gerges
,
R.
Jordan
,
F. A.
Thieme
,
J. L. B.
Coelho
, and
J. P.
Arenas
, “
Muffler modeling by transfer matrix method and experimental verification
,”
J. Braz. Soc. Mech. Sci. Eng.
27
(
2
),
132
140
(
2005
).
43.
M.
Nori
and
R.
Venegas
, “
Sound propagation in porous materials with annular pores
,”
J. Acoust. Soc. Am.
141
(
6
),
4642
4651
(
2017
).
44.
O.
Umnova
,
D.
Tsiklauri
, and
R.
Venegas
, “
Effect of boundary slip on the acoustical properties of microfibrous materials
,”
J. Acoust. Soc. Am.
126
(
4
),
1850
1861
(
2009
).
45.
C.
Boutin
and
C.
Geindreau
, “
Estimates and bounds of dynamic permeability of granular media
,”
J. Acoust. Soc. Am.
124
(
6
),
3576
3593
(
2008
).
46.
C.
Boutin
and
C.
Geindreau
, “
Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range
,”
Phys. Rev. E
82
,
036313
(
2010
).
47.
C.
Perrot
,
F.
Chevillotte
, and
R.
Panneton
, “
Bottom-up approach for microstructure optimization of sound absorbing materials
,”
J. Acoust. Soc. Am.
124
(
2
),
940
948
(
2008
).
48.
T. G.
Zieliński
, “
Microstructure-based calculations and experimental results for sound absorbing porous layers of randomly packed rigid spherical beads
,”
J. Appl. Phys.
116
(
3
),
034905
(
2014
).
49.
C.
Boutin
, “
Acoustics of porous media with inner resonators
,”
J. Acoust. Soc. Am.
134
(
6
),
4717
4729
(
2013
).
50.
R.
Venegas
and
C.
Boutin
, “
Acoustics of permeo-elastic materials
,”
J. Fluid Mech.
828
,
135
174
(
2017
).
51.
Y. S.
Choy
and
L.
Huang
, “
Experimental studies of a drum-like silencer
,”
J. Acoust. Soc. Am.
112
(
5
),
2026
2035
(
2002
).
52.
J. B.
Laurie
and
I. M.
Guled
, “
On tuning a reactive silencer by varying the position of an internal membrane
,”
J. Acoust. Soc. Am.
120
(
2
),
780
790
(
2006
).
53.
B. H.
Song
and
J. S.
Bolton
, “
A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials
,”
J. Acoust. Soc. Am.
107
(
3
),
1131
1152
(
2000
).
You do not currently have access to this content.