Combined laboratory experiment and numerical simulation are conducted on bubble clouds nucleated on the surface of a model kidney stone to quantify the energy shielding of the stone caused by cavitation during burst wave lithotripsy (BWL). In the experiment, the bubble clouds are visualized and bubble-scattered acoustics are measured. In the simulation, a compressible, multi-component flow solver is used to capture complex interactions among cavitation bubbles, the stone, and the burst wave. Quantitative agreement is confirmed between results of the experiment and the simulation. In the simulation, a significant shielding of incident wave energy by the bubble clouds is quantified. The magnitude of shielding can reach up to 90% of the energy of the incoming burst wave that otherwise would be transmitted into the stone, suggesting a potential loss of efficacy of stone comminution. There is a strong correlation between the magnitude of the energy shielding and the amplitude of the bubble-scattered acoustics, independent of the initial size and the void fraction of the bubble cloud within a range addressed in the simulation. This correlation could provide for real-time monitoring of cavitation activity in BWL.

1.
Bailey
,
M.
,
McAteer
,
J.
,
Pishchalnikov
,
Y.
,
Hamilton
,
M.
, and
Colonius
,
T.
(
2006
). “
Progress in lithotripsy research
,”
Acoust. Today
2
(
2
),
18
29
.
2.
Bailey
,
M. R.
,
Pishchalnikov
,
Y. A.
,
Sapozhnikov
,
O. A.
,
Cleveland
,
R. O.
,
McAteer
,
J. A.
,
Miller
,
N. A.
,
Pishchalnikova
,
I. V.
,
Connors
,
B. A.
,
Crum
,
L. A.
, and
Evan
,
A. P.
(
2005
). “
Cavitation detection during shock-wave lithotripsy
,”
Ultrasound Med. Biol.
31
(
9
),
1245
1256
.
3.
Bergamasco
,
L.
, and
Fuster
,
D.
(
2017
). “
Oscillation regimes of gas/vapor bubbles
,”
Int. J. Heat Mass Transfer
112
,
72
80
.
4.
Biesheuvel
,
A.
, and
vanWijngaarden
,
L.
(
1984
). “
Two-phase flow equations for a dilute dispersion of gas bubbles in liquid
,”
J. Fluid Mech.
148
,
301
318
.
5.
Cash
,
J.
, and
Karp
,
A.
(
1990
). “
A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides
,”
ACM Trans. Math. Software
16
(
3
),
201
222
.
6.
Chaigneau
,
M.
, and
Le
,
G. M.
(
1968
). “
On the composition of gas dissolved in human urine
,”
C. R. Seances Acad. Sci., Ser. D
267
(
22
),
1893
1895
.
7.
Coleman
,
A.
,
Saunders
,
J.
,
Crum
,
L.
, and
Dyson
,
M.
(
1987
). “
Acoustic cavitation generated by an extracorporeal shockwave lithotripter
,”
Ultrasound Med. Biol.
13
(
2
),
69
76
.
8.
Commander
,
K.
, and
Prosperetti
,
A.
(
1989
). “
Linear pressure waves in bubbly liquids: Comparison between theory and experiments
,”
J. Acoust. Soc. Am.
85
(
2
),
732
746
.
9.
Coralic
,
V.
, and
Colonius
,
T.
(
2014
). “
Finite-volume WENO scheme for viscous compressible multicomponent flows
,”
J. Comput. Phys.
274
,
95
121
.
10.
Crum
,
L. A.
(
1988
). “
Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL
,”
J. Urol.
140
(
6
),
1587
1590
.
11.
Duryea
,
A. P.
,
Hall
,
T. L.
,
Maxwell
,
A. D.
,
Xu
,
Z.
,
Cain
,
C. A.
, and
Roberts
,
W. W.
(
2011
). “
Histotripsy erosion of model urinary calculi
,”
J. Endourol.
25
(
2
),
341
344
.
12.
Evan
,
A. P.
,
Willis
,
L. R.
,
McAteer
,
J. A.
,
Bailey
,
M. R.
,
Connors
,
B. A.
,
Shao
,
Y.
,
Lingeman
,
J. E.
,
Williams
,
J. C.
,
Fineberg
,
N. S.
, and
Crum
,
L. A.
(
2002
). “
Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy
,”
J. Urol.
168
(
4
),
1556
1562
.
13.
Fuster
,
D.
, and
Colonius
,
T.
(
2011
). “
Modeling bubble clusters in compressible liquids
,”
J. Fluid Mech.
688
,
352
389
.
14.
Garnier
,
J.
, and
Papanicolaou
,
G.
(
2009
). “
Passive sensor imaging using cross correlations of noisy signals in a scattering medium
,”
SIAM J. Imag. Sci.
2
(
2
),
396
437
.
15.
Hwang
,
E. Y.
,
Fowlkes
,
J. B.
, and
Carson
,
P. L.
(
1998
). “
Variables controlling contrast generation in a urinary bladder model
,”
J. Acoust. Soc. Am.
103
(
6
),
3706
3716
.
16.
Ikeda
,
T.
,
Yoshizawa
,
S.
,
Masataka
,
T.
,
Allen
,
J.
,
Takagi
,
S.
,
Ohta
,
N.
,
Kitamura
,
T.
, and
Matsumoto
,
Y.
(
2006
). “
Cloud cavitation control for lithotripsy using high intensity focused ultrasound
,”
Ultrasound Med. Biol.
32
(
9
),
1383
1397
.
17.
Johnsen
,
E.
, and
Colonius
,
T.
(
2009
). “
Numerical simulations of non-spherical bubble collapse
,”
J. Fluid Mech.
629
,
231
262
.
18.
Kameda
,
M.
, and
Matsumoto
,
Y.
(
1996
). “
Shock waves in a liquid containing small gas bubbles
,”
Phys. Fluids
8
(
2
),
322
335
.
19.
Keller
,
J.
, and
Miksis
,
M.
(
1980
). “
Bubble oscillations of large amplitude
,”
J. Acoust. Soc. Am.
68
(
2
),
628
633
.
20.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
(
1986
).
Theory of Elasticity, vol. 7,
Course of Theoretical Physics, 3rd edition (
Elsevier
,
New York
).
21.
Lingeman
,
J. E.
,
McAteer
,
J. A.
,
Gnessin
,
E.
, and
Evan
,
A. P.
(
2009
). “
Shock wave lithotripsy: Advances in technology and technique
,”
Nat. Rev. Urol.
6
(
12
),
660
670
.
22.
Maeda
,
K.
(
2018
). “
Simulation, experiments, and modeling of cloud cavitation with application to burst wave lithotripsy
,” Ph.D. thesis,
California Institute of Technology
.
23.
Maeda
,
K.
, and
Colonius
,
T.
(
2017
). “
A source term approach for generation of one-way acoustic waves in the Euler and Navier-Stokes equations
,”
Wave Motion
75
,
36
49
.
24.
Maeda
,
K.
, and
Colonius
,
T.
(
2018a
). “
Bubble cloud dynamics in an ultrasound field
,” arXiv preprint arXiv:1805.00129.
25.
Maeda
,
K.
, and
Colonius
,
T.
(
2018b
). “
Eulerian–Lagrangian method for simulation of cloud cavitation
,”
J. Comput. Phys.
371
,
994
1017
.
26.
Maeda
,
K.
,
Kreider
,
W.
,
Maxwell
,
A.
,
Cunitz
,
B.
,
Colonius
,
T.
, and
Bailey
,
M.
(
2015
). “
Modeling and experimental analysis of acoustic cavitation bubbles for burst wave lithotripsy
,”
J. Phys. Conf. Ser.
656
(
1
),
012027
.
27.
Matlaga
,
B. R.
,
McAteer
,
J. A.
,
Connors
,
B. A.
,
Handa
,
R. K.
,
Evan
,
A. P.
,
Williams
,
J. C.
,
Lingeman
,
J. E.
, and
Willis
,
L. R.
(
2008
). “
Potential for cavitation-mediated tissue damage in shockwave lithotripsy
,”
J. Endourol.
22
(
1
),
121
126
.
28.
Matsumoto
,
Y.
, and
Yoshizawa
,
S.
(
2005
). “
Behaviour of a bubble cluster in an ultrasound field
,”
Int. J. Numer. Methods Fluids
47
(
6-7
),
591
601
.
29.
Maxwell
,
A.
,
Cunitz
,
B.
,
Kreider
,
W.
,
Sapozhnikov
,
O.
,
Hsi
,
R.
,
Harper
,
J.
,
Bailey
,
M.
, and
Sorensen
,
M.
(
2015
). “
Fragmentation of urinary calculi in vitro by burst wave lithotripsy
,”
J. Urol.
193
(
1
),
338
344
.
30.
Maxwell
,
A. D.
,
Wang
,
T.-Y.
,
Cain
,
C. A.
,
Fowlkes
,
J. B.
,
Sapozhnikov
,
O. A.
,
Bailey
,
M. R.
, and
Xu
,
Z.
(
2011
). “
Cavitation clouds created by shock scattering from bubbles during histotripsy
,”
J. Acoust. Soc. Am.
130
(
4
),
1888
1898
.
31.
May
,
P. C.
,
Kreider
,
W.
,
Maxwell
,
A. D.
,
Wang
,
Y.-N.
,
Cunitz
,
B. W.
,
Blomgren
,
P. M.
,
Johnson
,
C. D.
,
Park
,
J. S. H.
,
Bailey
,
M. R.
,
Lee
,
D.
,
Harper
,
J. D.
, and
Sorensen
,
M. D.
(
2017
). “
Detection and evaluation of renal injury in burst wave lithotripsy using ultrasound and magnetic resonance imaging
,”
J. Endourol.
31
(
8
),
786
792
.
32.
McAteer
,
J.
,
Bailey
,
M.
,
Williams
,
J.
, Jr.
,
Cleveland
,
R.
, and
Evan
,
A.
(
2005
). “
Strategies for improved shock wave lithotripsy
,”
Minerva Urol. Nefrol.
57
(
4
),
271
287
.
33.
Miller
,
D. L.
,
Smith
,
N. B.
,
Bailey
,
M. R.
,
Czarnota
,
G. J.
,
Hynynen
,
K.
,
Makin
,
I. R. S.
, and
Bioeffects Committee of the American Institute of Ultrasound in Medicine
. (
2012
). “
Overview of therapeutic ultrasound applications and safety considerations
,”
J. Ultrasound Med.
31
(
4
),
623
634
.
34.
Movahed
,
P.
,
Kreider
,
W.
,
Maxwell
,
A.
,
Dunmire
,
B.
, and
Freund
,
J.
(
2017
). “
Ultrasound-induced bubble clusters in tissue-mimicking agarphantoms
,”
Ultrasound Med. Biol.
43
(
10
),
2318
2328
.
35.
Okita
,
K.
,
Sugiyama
,
K.
,
Takagi
,
S.
, and
Matsumto
,
Y.
(
2013
). “
Microbubble behavior in an ultrasound field for high intensity focused ultrasound therapy enhancement
,”
J. Acoust. Soc. Am.
134
(
2
),
1576
1585
.
36.
Otsu
,
N.
(
1979
). “
A threshold selection method from gray-level histograms
,”
IEEE Trans. Syst. Man Cybern.
9
(
1
),
62
66
.
37.
Perigaud
,
G.
, and
Saurel
,
R.
(
2005
). “
A compressible flow model with capillary effects
,”
J. Comput. Phys.
209
(
1
),
139
178
.
38.
Philipp
,
A.
, and
Lauterborn
,
W.
(
1998
). “
Cavitation erosion by single laser-produced bubbles
,”
J. Fluid Mech.
361
,
75
116
.
39.
Pishchalnikov
,
Y. A.
,
McAteer
,
J. A.
,
Williams
,
J. C.
, Jr.
,
Pishchalnikova
,
I. V.
, and
Vonderhaar
,
R. J.
(
2006
). “
Why stones break better at slow shockwave rates than at fast rates: In vitro study with a research electrohydraulic lithotripter
,”
J. Endourol.
20
(
8
),
537
541
.
40.
Pishchalnikov
,
Y.
,
Sapozhnikov
,
O.
,
Bailey
,
M.
,
Williams
,
J.
, Jr.
,
Cleveland
,
R.
,
Colonius
,
T.
,
Crum
,
L.
,
Evan
,
A.
, and
McAteer
,
J.
(
2003
). “
Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves
,”
J. Endourol.
17
(
7
),
435
446
.
41.
Pishchalnikov
,
Y. A.
,
Williams
,
J. C.
, Jr.
, and
McAteer
,
J. A.
(
2011
). “
Bubble proliferation in the cavitation field of a shock wave lithotripter
,”
J. Acoust. Soc. Am.
130
(
2
),
EL87
EL93
.
42.
Poynton
,
C.
(
2012
).
Digital Video and HD: Algorithms and Interfaces
(
Elsevier
,
Boston, MA
).
43.
Preston
,
A.
,
Colonius
,
T.
, and
Brennen
,
C.
(
2007
). “
A reduced-order model of diffusive effects on the dynamics of bubbles
,”
Phys. Fluids
19
,
123302
.
44.
Stride
,
E.
, and
Coussios
,
C.
(
2010
). “
Cavitation and contrast: The use of bubbles in ultrasound imaging and therapy
,”
Proc. Inst. Mech. Eng. H
224
(
2
),
171
191
.
45.
Tanguay
,
M.
(
2004
). “
Numerical simulation and analysis of shockwave lithotripsy
,” Ph.D. thesis,
California Institute of Technology
.
46.
Thoma
,
C.
(
2014
). “
Stones: Bursting through limitations of SWL
,”
Nat. Rev. Urol.
11
(
10
),
540
.
47.
Wang
,
Y.-C.
, and
Brennen
,
C.
(
1999
). “
Numerical computation of shock waves in a spherical cloud of cavitation bubbles
,”
J. Fluids Eng.
121
(
4
),
872
880
.
48.
Yoshizawa
,
S.
,
Ikeda
,
T.
,
Ito
,
A.
,
Ota
,
R.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
(
2009
). “
High intensity focused ultrasound lithotripsy with cavitating microbubbles
,”
Med. Biol. Eng. Comput.
47
(
8
),
851
860
.
49.
Yura
,
T.
,
Lafond
,
M.
,
Yoshizawa
,
S.
, and
Umemura
,
S.-I.
(
2018
). “
Effect of annular focusing of ultrasound on rate of stone erosion using cavitation bubbles
,”
Jpn. J. Appl. Phys.
57
(
7S1
),
07LB18
.
50.
Zhong
,
P.
,
Chuong
,
C.
, and
Preminger
,
G.
(
1993
). “
Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy
,”
J. Acoust. Soc. Am.
94
(
1
),
29
36
.
You do not currently have access to this content.