It is proposed that the ultrasound frequency spectrum should be divided into three bands in order to facilitate a more rational assessment of its health effects. Whilst statement of the frequencies at the borders of these bands facilitates their definition, it is recognized that these observables vary continuously with frequency and consequently these border frequencies should not be used to rule out the possibility of a given effect occurring. The lowest band, US(A), lies between 17.8 and 500 kHz. In this band acoustic cavitation and its associated forces form the dominant process resulting in biological effects in liquids and soft tissues, whereas health effects from airborne ultrasound have been reported but are far less researched. In the middle band, US(B), between 500 kHz and 100 MHz, temperature rise in tissues becomes the most important biological effect of exposure. The highest band, US(C), covers frequencies above 100 MHz, for which the radiation force becomes an increasingly important biophysical mechanism. A justification for the selection of 17.8 kHz in preference to any other threshold for the lower frequency limit for ultrasound is given.

1.
uBeam, “
The safety of sound
,” http://ubeam.com/technology/ (Last viewed 15 April 2017).
2.
T. G.
Leighton
, “
Are some people suffering as a result of increasing mass exposure of the public to ultrasound in air?
,”
Proc. R. Soc. A
472
(2185),
20150624
(
2016
).
3.
R.
Kubota
,
Y.
Yamashita
,
T.
Kenmotsu
,
Y.
Yoshikawa
,
K.
Yoshida
,
Y.
Watanabe
,
T.
Imanaka
, and
K.
Yoshikawa
, “
Double-strand breaks in genome-sized DNA caused by ultrasound
,”
Chemphyschem.
18
,
959
964
(
2017
).
4.
D.
Noble
and
T. L.
Blundell
, “
Effects of ultrasound and infrasound relevant to human health
,”
Prog. Biophys. Mol. Biol.
93
,
1
420
(
2007
).
5.
AIUM
, “
Bioeffects Consensus Report
,”
J. Ultrasound Med.
27
,
503
632
(
2008
).
6.
S. B.
Barnett
,
F.
Duck
, and
M.
Ziskin
, “
WFUMB symposium on safety of ultrasound in medicine: Conclusions and recommendations on biological effects and safety of ultrasound contrast agents, 2006
,”
Ultrasound Med. Biol.
33
(
2
),
233
234
(
2007
).
7.
F. A.
Duck
, “
Hazards, risks and safety of diagnostic ultrasound
,”
Med. Eng. Phys.
30
,
1338
1348
(
2008
).
8.
T. G.
Leighton
, “
Comment on ‘Are some people suffering as a result of increasing mass exposure of the public to ultrasound in air?
,’ ”
Proc. R. Soc. A
473
,
20160828
(
2017
).
9.
A.
Rodríguez Valiente
,
A.
Trinidad
,
J. R.
García Berrocal
,
C.
Górriz
, and
R.
Ramírez Camacho
, “
Extended high-frequency (9–20 kHz) audiometry reference thresholds in 645 healthy subjects
,”
Int. J. Audiol.
53
,
531
545
(
2014
).
10.
K. R.
Henry
and
G. A.
Fast
, “
Ultrahigh-frequency auditory thresholds in young adults: Reliable responses up to 24 kHz with a quasi-free field technique
,”
Audiology
23
,
477
489
(
1984
).
11.
P. G.
Stelmachowicz
,
K. A.
Beauchaine
,
A.
Kalberer
, and
W.
Jesteadt
, “
Normative thresholds in the 8- to 20-kHz range as a function of age
,”
J. Acoust. Soc. Am.
86
,
1384
1391
(
1989
).
12.
K.
Ashihara
,
K.
Kurakata
,
T.
Mizunami
, and
K.
Matsushita
, “Hearing threshold for pure tones above 20 kHz
,”
Acoust. Sci. Tech.
27
,
12
19
(
2006
).
13.
R.
Filipo
,
E.
de Seta
, and
G. A.
Bertoli
, “
High-frequency audiometry in children
,”
Scand. Audiol.
17
,
213
216
(
1988
).
14.
W. I.
Acton
and
M. B.
Carson
, “
Auditory and subjective effects of airborne noise from industrial ultrasonic sources
,”
Br. J. Ind. Med.
24
,
297
304
(
1967
).
15.
W. I.
Acton
, “
The effects of industrial airborne ultrasound on humans
,”
Ultrasonics
12
,
124
128
(
1974
).
16.
H. E.
Von Gierke
and
C. W.
Nixon
, “
Damage risk criteria for hearing and human body vibration
,” in
Noise and Vibration Control Engineering: Principles and Applications
(
Wiley
,
New York
,
1992
), pp.
598
600
.
17.
V. G.
Chouvardas
,
A. N.
Miliou
, and
M. K.
Hatalis
, “
Tactile displays: Overview and recent advances
,”
Displays
29
,
185
194
(
2008
).
18.
D.
Dalecki
,
S. Z.
Child
,
C. H.
Raeman
, and
E. L.
Carstensen
, “
Tactile perception of ultrasound
,”
J. Acoust. Soc. Am.
97
,
3165
3170
(
1995
).
19.
IEC 61161
,
Ultrasonic Power Measurements in Liquids in the Frequency Range 0.5 MHz to 25 MHz
(
International Electrotechnical Commission
,
Geneva
,
1992
).
20.
H.
Bruus
, “
Acoustofluidics 7: The acoustic radiation force on small particles
,”
Lab Chip.
12
,
1014
1021
(
2012
).
21.
P.
Glynne-Jones
,
P. P.
Mishra
,
R. J.
Boltryk
, and
M.
Hill
, “
Efficient finite element modeling of radiation forces on elastic particles of arbitrary size and geometry
,”
J. Acoust. Soc. Am.
133
(
4
),
1885
1893
(
2013
).
22.
A. A.
Doinikov
, “
Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. I. General formula
,”
J. Acoust. Soc. Am.
101
,
713
721
(
1997
).
23.
A. P.
Berkhoff
,
M. M.
van den Berg
, and
J. M.
Thijssen
, “
Iterative calculation of reflected and transmitted acoustic waves at a rough surface
,”
IEEE Trans. Ultrasonics Ferroelectr. Freq. Control
42
,
663
671
(
1995
).
24.
C. C.
Church
,
E. L.
Carstensen
,
W. L.
Nyborg
,
P. L.
Carson
,
L. A.
Frizzell
, and
M. R.
Bailey
, “
The risk of exposure to diagnostic ultrasound in postnatal subjects Nonthermal Mechanisms
,”
J. Ultrasound Med.
27
,
565
592
(
2008
).
25.
C. C.
Church
and
M. W.
Miller
, “
Quantification of risk from fetal exposure to diagnostic ultrasound
,”
Prog. Biophys. Mol. Biol.
93
,
331
353
(
2007
).
26.
F. A.
Duck
, “
Acoustic dose and acoustic dose rate
,”
Ultrasound Med. Biol.
35
,
1679
1685
(
2009
).
27.
W. L.
Nyborg
, “
Acoustic streaming
,” in
Nonlinear Acoustics
, edited by
M. F.
Hamilton
and
D. T.
Blackstock
(
Academic
,
New York
,
1998
), Chap. 7, pp.
207
231
.
28.
H. C.
Starritt
,
F. A.
Duck
, and
V. F.
Humphrey
, “
An experimental investigation of streaming in pulsed diagnostic ultrasound fields
,”
Ultrasound Med. Biol.
15
,
363
373
(
1989
).
29.
K. R.
Nightingale
,
M. L.
Palmeri
,
R. W.
Nightingale
, and
G. E.
Trahey
, “
On the feasibility of remote palpation using acoustic radiation force
,”
J. Acoust. Soc. Am.
110
,
625
634
(
2001
).
30.
J.
Bercoff
,
S.
Chaffai
,
M.
Tanter
, and
M.
Fink
, “
Ultrafast imaging of beamformed shear waves induced by the acoustic radiation force in soft tissue: Application to transient elastography
,” in
Proceedings of IEEE Ultrasonics Symposium
(
2002
), pp.
1899
1902
.
31.
T. G.
Leighton
, “
What is ultrasound?
,”
Prog. Biophys. Mol. Biol.
93
(
1-3
),
3
83
(
2007
).
32.
J. G.
Abbott
, “
Rationale and derivation of MI and TI—A review
,”
Ultrasound Med. Biol.
25
,
431
412
(
1999
).
33.
W. L.
Nyborg
, “
Heat generation by ultrasound in a relaxing medium
,”
J. Acoust. Soc. Am.
70
,
310
312
(
1981
).
34.
Advisory Group on Non-Ionising Radiation
, “
Health effects from radiofrequency electromagnetic fields
,” Documents of the Heath Protection Agency RCE-20 (
2012
).
35.
F. A.
Duck
,
Physical Properties of Tissue
(
Academic Press
,
London
,
1990
) [reprinted (Institute of Physics and Medicine, York, 2012)].
36.
P. K.
Verma
,
V. F.
Humphrey
, and
F. A.
Duck
, “
Broadband measurements of the frequency dependence of attenuation coefficient and velocity in amniotic fluid, urine and human serum albumin solutions
,”
Ultrasound Med. Biol.
31
,
1375
1381
(
2005
).
37.
ICRU Report 61
, “
Tissue substitutes, phantoms and computational modelling in medical ultrasound
,” International Commission on Radiation Units and Measurements, Bethesda, MD (
1998
).
38.
W. C.
Dewey
, “
Arrhenius relationships from the molecule and cell to the clinic
,”
Int. J. Hyperthermia
10
,
457
483
(
1994
).
39.
H. G.
Park
,
S. I.
Han
,
S. Y.
Oh
, and
H. S.
Kang
, “
Cellular responses to mild heat stress
,”
Cell Mol. Life Sci.
62
,
10
23
(
2005
).
40.
H.
Huang
,
R. D.
Kamm
, and
R. T.
Lee
, “
Cell mechanics and mechanotransduction: Pathways, probes and physiology
,”
Am. J. Cell Physiol.
287
,
C1
C11
(
2004
).
41.
C. H.
Allen
,
H.
Frings
, and
I.
Rudnick
, “
Some biological effects of intense high frequency airborne sound
,”
J. Acoust. Soc. Am.
20
,
62
65
(
1948
).
42.
Health Canada
, “
Guidelines for the safe use of ultrasound: Part II—Industrial and commercial applications safety code 24
,” EHD-TR-158, Health Protection Branch, Environmental Health Directorate, National Health and Welfare, Ottawa, Canada (
1991
).
43.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic Press
,
London
,
1994
), pp.
73
91
, 301–341, 379–407.
44.
H. G.
Flynn
and
C. C.
Church
, “
Transient pulsations of small gas bubbles in water
,”
J. Acoust. Soc. Am.
84
,
985
998
(
1988
).
45.
R. E.
Apfel
and
C. K.
Holland
, “
Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound
,”
Ultrasound Med. Biol.
17
,
179
185
(
1991
).
46.
C. K.
Holland
and
R. E.
Apfel
, “
An improved theory for the prediction of microcavitation thresholds
,”
IEEE Trans. Ultrasonics Ferroelectr. Freq. Control
36
,
204
208
(
1989
).
47.
J. S.
Allen
,
R. A.
Roy
, and
C. C.
Church
, “
On the role of shear viscosity in mediating inertial cavitation from short-pulse, megahertz-frequency ultrasound
,”
IEEE Trans. Ultrasonics Ferroelectr. Freq. Control
44
(
4
),
743
751
(
1997
).
48.
E.
Stride
and
N.
Saffari
, “
Microbubble ultrasound contrast agents: A review
,”
Proc. Inst. Mech. Eng. Part H: J. Eng. Med.
217
,
429
447
(
2003
).
49.
P. R.
Birkin
,
D. G.
Offin
, and
T. G.
Leighton
, “
Experimental and theoretical characterisation of sonochemical cells. Part 2: Cell disruptors (ultrasonic horn) and cavity cluster collapse
,”
Phys. Chem. Chem. Phys.
7
,
530
537
(
2005
).
50.
C. C.
Church
, “
A method to account for acoustic microstreaming when predicting bubble growth rates produced by rectified diffusion
,”
J. Acoust. Soc. Am.
84
,
1758
1764
(
1988
).
51.
T. G.
Leighton
,
M. J. W.
Pickworth
,
J.
Tudor
, and
P. P.
Dendy
, “
Search for sonoluminescence in vivo in the human cheek
,”
Ultrasonics
28
,
181
184
(
1990
).
52.
T. G.
Leighton
,
F.
Fedele
,
A.
Coleman
,
C.
McCarthy
,
S.
Ryves
,
A.
Hurrell
,
A.
De Stefano
, and
P. R.
White
, “
A passive acoustic device for real-time monitoring the efficacy of shockwave lithotripsy treatment
,”
Ultrasound Med. Biol.
34
(
10
),
1651
1665
(
2008
).
53.
T. G.
Leighton
,
C. K.
Turangan
,
A. R.
Jamaluddin
,
G. J.
Ball
, and
P. R.
White
, “
Prediction of far-field acoustic emissions from cavitation clouds during shock wave lithotripsy for development of a clinical device
,”
Proc. R. Soc. A
469
(
2150
),
20120538
(
2013
).
54.
M. A.
Ainslie
and
T. G.
Leighton
, “
Review of scattering and extinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble
,”
J. Acoust. Soc. Am.
130
(
5
),
3184
3208
(
2011
).
55.
A. D.
Maxwell
,
T.-Y.
Wang
,
C. A.
Cain
,
J. B.
Fowlkes
,
O. A.
Sapozhnikov
,
M. R.
Bailey
, and
Z.
Xu
, “
Cavitation clouds created by shock scattering from bubbles during histotripsy
,”
J. Acoust. Soc. Am.
130
(
4
),
1888
1898
(
2011
).
56.
J.
McLaughlan
,
I.
Rivens
,
T. G.
Leighton
, and
G.
ter Haar
, “
A study of bubble activity generated in ex-vivo tissue by high intensity focused ultrasound (HIFU)
,”
Ultrasound Med. Biol.
36
(
8
),
1327
1344
(
2010
).
57.
A. O.
Maksimov
and
T. G.
Leighton
, “
Transient processes near the threshold of acoustically driven bubble shape oscillations
,”
Acta Acust.
87
(
3
),
322
333
(
2001
).
58.
A. O.
Maksimov
and
T. G.
Leighton
, “
Pattern formation on the surface of a bubble driven by an acoustic field
,”
Proc. R. Soc. A
468
,
57
75
(
2012
).
59.
P. R.
Birkin
,
D. G.
Offin
,
C. J. B.
Vian
,
T. G.
Leighton
, and
A. O.
Maksimov
, “
Investigation of non-inertial cavitation produced by an ultrasonic horn
,”
J. Acoust. Soc. Am.
130
(
5
),
3297
3308
(
2011
).
60.
P. R.
Birkin
,
D. G.
Offin
,
C. J. B.
Vian
,
R. P.
Howlin
,
J. I.
Dawson
,
T. J.
Secker
,
R. C.
Herve
,
P.
Stoodley
,
R. O. C.
Oreffo
,
C. W.
Keevil
, and
T. G.
Leighton
, “
Cold water cleaning of brain proteins, biofilm and bone—Harnessing an ultrasonically activated stream
,”
Phys. Chem. Chem. Phys.
17
,
20574
20579
(
2015
).
61.
T. G.
Leighton
, “
The acoustic bubble: Ocean, cetacean and extraterrestrial acoustics: Cold water cleaning
,”
J. Phys.: Conf. Ser.
797
,
012001
(
2017
).
62.
R. P.
Howlin
,
S.
Fabbri
,
D. G.
Offin
,
N.
Symonds
,
K. S.
Kiang
,
R. J.
Knee
,
D. C.
Yoganantham
,
J. S.
Webb
,
P. R.
Birkin
,
T. G.
Leighton
, and
P.
Stoodley
, “
Removal of dental biofilms with a novel ultrasonically-activated water stream
,”
J. Dental Res.
94
(
9
),
1303
1309
(
2015
).
63.
C. C.
Church
, “
Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound
,”
Ultrasound Med. Biol.
28
,
1349
1364
(
2002
).
64.
L. A.
Crum
and
Y.
Mao
, “
Acoustically enhanced bubble growth at low frequencies and its implications for human diver and marine mammal safety
,”
J. Acoust. Soc. Am.
99
(
5
),
2898
2907
(
1996
).
65.
EARS Project
, “
Assessment and safety of non-audible sound
,” EARS Project Communiqué (June
2015
).
66.
L. R.
Gavrilov
,
Use of Focused Ultrasound for Stimulation of Various Neural Structures
(
Nova Biomedical
,
New York
,
2014
).
67.
T. G.
Leighton
and
R. O.
Cleveland
, “
Lithotripsy
,”
Proc. Inst. Mech. Eng. Part H: J. Eng. Med.
224
(
2
),
317
342
(
2010
).
68.
R. M.
Schmitt
,
J.
Zeichman
,
A. C.
Casanova
, and
D.
Delong
, “
Model based development of a commercial acoustic fingerprint sensor
,” in
2012 IEEE International Ultrasonics Symposium
(
2012
), pp.
1075
1085
.
69.
C. P.
Skillern
, “
Human response to measured sound pressure levels from ultrasonic devices
,”
Am. Ind. Hyg. Assoc. J.
26
,
132
136
(
1965
).
70.
H.
Davis
,
H. O.
Parrack
, and
D. H.
Eldredge
, “
Hazards of intense sound and ultrasound
,”
Ann. Otol. Rhinol. Laryngol.
58
,
732
738
(
1949
).
71.
B. A.
Herman
and
D.
Powell
, “
Airborne ultrasound: Measurement and possible adverse effects
,” DHHS Publication No. FDA 81-8163, U.S. Department of Health and Human Resources, Food and Drug Administration, Rockville, MD, 1981.
72.
R. F.
Schmidt
,
Fundamentals of Sensory Physiology
, 3rd ed. (
Springer
,
Berlin, Germany
,
1986
), p.
208
.
73.
Swedish regulations
, “
Buller—Arbetsmiljöverkets föreskrifter om buller samt allmänna råd om tillämpningen av föreskrifterna,” (“Noise—Work Environment Authority regulations on noise and general advice on the application of Regulations
”), Swedish Manual AFS 2005:16, see especially ultrasound limits on pp. 22 and 23, http://www.av.se/dokument/afs/afs2005_16.pdf (Last viewed 13 October 2018).
74.
ANSI S1.1-2013
,
American National Standard Acoustical Terminology
(
American National Standards Institute
,
New York
,
2013
).
75.
International Non-Ionizing Radiation Committee of the International Radiation Protection Association (INIRC-IRPA)
, “
Interim guidelines on the limits of human exposure to airborne ultrasound
,”
Health Phys.
46
,
969
974
(
1984
).
76.
S.
Holm
, “
Hybrid ultrasound–RFID indoor positioning: Combining the best of both worlds
,” in
Proceedings of the 2009 IEEE International Conference on RFID
(
2009
), pp.
155
162
.
77.
American Conference of Governmental Industrial Hygienists (ACGIH)
, “
Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices
” (
2003
).
78.
International Commission on Non-Ionizing Radiation Protection (ICNIRP)
, “Charter,” http://www.icnirp.org/cms/upload/doc/charter.pdf (1992) (Last viewed 31 May
2016
).
79.
BS EN ISO 266
:1997: Acoustics—Preferred Frequencies, British Standard (
1997
).
80.
ISO 266
:1997: Acoustics—Preferred Frequencies (1997) (International Standards Organization, Geneva,
2013
).
81.
M. A.
Ainslie
, “
A century of sonar: Planetary oceanography, underwater noise monitoring, and the terminology of underwater sound
,”
Acoust. Today
11
(
1
),
12
16
(
2015
).
82.
M. A.
Ainslie
and
T. G.
Leighton
, “
Sonar equations for planetary exploration
,”
J. Acoust. Soc. Am.
140
(
2
),
1400
1419
(
2016
).
83.
P. T.
Madsen
, “
Marine mammals and noise: Problems with root mean square sound pressure levels for transients
,”
J. Acoust. Soc. Am.
117
(
6
),
3952
3957
(
2005
).
84.
D. C.
Finfer
,
T. G.
Leighton
, and
P. R.
White
, “
Issues relating to the use of a 61.5 dB conversion factor when comparing airborne and underwater anthropogenic noise levels
,”
Appl. Acoust.
69
(
5
),
464
471
(
2008
).
You do not currently have access to this content.