Physically reconfigurable, tessellated acoustic arrays inspired by origami structures have recently been leveraged to adaptively guide acoustic energy. Yet, the prior work only examined tessellated arrays composed from uniform folding patterns, so that the limited folding-induced shape change prohibits broad acoustic field tailoring. To explore a wider range of opportunities by origami-inspired acoustic arrays, here, piecewise geometries are assembled from multiple folding patterns so that acoustic transducer elements are reconfigured in more intricate ways upon array folding. An analytical model of assembled geometries and resulting acoustic wave radiation from the oscillating facets is formulated. Using the theoretical tool, parametric investigations are undertaken to study the adaptation of acoustic energy transmission caused by folding and modularity of the array assembly. A proof-of-concept specimen is fabricated and experiments are conducted to validate the theoretical model and to investigate the efficacy of the piecewise acoustic array concept. The total findings reveal that the assembly of tessellated acoustic arrays may emulate the wave radiation emitted by ideal acoustic sources of intricate shapes. Moreover, by exploitation of origami folding actions, the shape adaptations of the proposed arrays permit straightforward wave guiding opportunities for diverse application needs.

1.
K.
Fuchi
,
J.
Tang
,
B.
Crowgey
,
A. R.
Diaz
,
E. J.
Rothwell
, and
R. O.
Ouedraogo
, “
Origami tunable frequency selective surfaces
,”
IEEE Antennas Wireless Propag. Lett.
11
,
473
475
(
2012
).
2.
S.
Bildik
,
S.
Dieter
,
C.
Fritzsch
,
W.
Menzel
, and
R.
Jakoby
, “
Reconfigurable folded recflectarray antenna based upon liquid crystal technology
,”
IEEE Trans. Antennas Propag.
63
,
122
132
(
2015
).
3.
S.
Babaee
,
J. T. B.
Overvelde
,
E. R.
Chen
,
V.
Tournat
, and
K.
Bertoldi
, “
Reconfigurable origami-inspired acoustic waveguides
,”
Sci. Adv.
2
,
e1601019
(
2016
).
4.
M.
Thota
,
S.
Li
, and
K. W.
Wang
, “
Lattice reconfiguration and phononic band-gap adaptation via origami folding
,”
Phys. Rev. B
95
,
064307
(
2017
).
5.
K.
Zhang
,
Y. H.
Jung
,
S.
Mikael
,
J. H.
Seo
,
M.
Kim
,
H.
Mi
,
H.
Zhou
,
Z.
Xia
,
W.
Zhou
,
S.
Gong
, and
Z.
Ma
, “
Origami silicon optoelectronics for hemispherical electronic eye systems
,”
Nat. Commun.
8
,
1782
(
2017
).
6.
T.
Wu
,
S. S.
Hamann
,
A. C.
Ceballos
,
C. E.
Chang
,
O.
Solgaard
, and
R. T.
Howe
, “
Design and fabrication of silicon-tessellated structures for monocentric imagers
,”
Microsyst. Nanoeng.
2
,
16019
(
2016
).
7.
L. E.
Kinsler
,
A. R.
Frey
,
A. B.
Coppens
, and
J. V.
Sanders
,
Fundamentals of Acoustics
(
Wiley
,
New York
,
2000
).
8.
J.
Benesty
and
J.
Chen
,
Study and Design of Differential Microphone Arrays
(
Springer
,
Berlin
,
2013
).
9.
B. D.
Van Veen
and
K. M.
Buckley
, “
Beamforming: A versatile approach to spatial filtering
,”
IEEE ASSP Mag.
5
,
4
24
(
1988
).
10.
B. D.
Steinberg
,
Principles of Aperture and Array System Design: Including Random and Adaptive Arrays
(
Wiley
,
New York
,
1976
).
11.
F. A.
Jolesz
and
K. H.
Hynynen
,
MRI-Guided Focused Ultrasound Surgery
(
CRC Press
,
New York
,
2007
).
12.
L.
Azar
,
Y.
Shi
, and
S. C.
Wooh
, “
Beam focusing behavior of linear phased arrays
,”
NDT&E Int.
33
,
189
198
(
2000
).
13.
I. F.
Akyildiz
,
D.
Pompili
, and
T.
Melodia
, “
Underwater acoustic sensor networks: Research challenges
,”
Ad Hoc Networks
3
,
257
279
(
2005
).
14.
R. L.
Harne
and
D. T.
Lynd
, “
Origami acoustics: Using principles of folding structural acoustics for simple and large focusing of sound energy
,”
Smart Mater. Struct.
25
,
085031
(
2016
).
15.
C.
Zou
and
R. L.
Harne
, “
Adaptive acoustic energy delivery to near and far fields using foldable, tessellated star transducers
,”
Smart Mater. Struct.
26
,
055021
(
2017
).
16.
C.
Zou
,
D. T.
Lynd
, and
R. L.
Harne
, “
Acoustic wave guiding by reconfigurable tessellated arrays
,”
Phys. Rev. Appl.
9
,
014009
(
2018
).
17.
S. A.
Zirbel
,
R. J.
Lang
,
M. W.
Thomson
,
D. A.
Sigel
,
P. E.
Walkemeyer
,
B. P.
Trease
,
S. P.
Magleby
, and
L. L.
Howell
, “
Accommodating thickness in origami-based deployable arrays
,”
J. Mech. Des.
135
,
111005
(
2013
).
18.
T. U.
Lee
and
J. M.
Gattas
, “
Geometric design and construction of structurally stabilized accordion shelters
,”
J. Mech. Rob.
8
,
031009
(
2016
).
19.
S. A.
Glegg
,
M. P.
Olivieri
,
R. K.
Coulson
, and
S. M.
Smith
, “
A passive sonar system based on an autonomous underwater vehicle
,”
IEEE J. Ocean. Eng.
26
,
700
710
(
2001
).
20.
R.
Fisher
,
K.
Thomenius
,
R.
Wodnicki
,
R.
Thomas
,
S.
Cogan
,
C.
Hazard
,
W.
Lee
,
D.
Mills
,
B.
Khuri-Yakub
,
A.
Ergun
, and
G.
Yaralioglu
, “
Reconfigurable arrays for portable ultrasound
,” in
Proceedings of IEEE Ultrasonics Symposium
, Rotterdam (
2005
), pp.
495
499
.
21.
W.
Li
,
D.
Torres
,
R.
Díaz
,
Z.
Wang
,
C.
Wu
,
C.
Wang
,
Z. L.
Wang
, and
N.
Sepúlveda
, “
Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics
,”
Nat. Commun.
8
,
15310
(
2017
).
22.
T.
Tachi
, “
Freeform variations of origami
,”
J. Geom. Graphics
14
,
203
215
(
2010
).
23.
L. H.
Dudte
,
E.
Vouga
,
T.
Tachi
, and
L.
Mahadevan
, “
Programming curvature using origami tessellations
,”
Nat. Mater.
15
,
583
588
(
2016
).
24.
R. E.
Christiansen
and
E.
Fernandez-Grande
, “
Design of passive directional acoustic devices using topology optimization-from method to experimental validation
,”
J. Acoust. Soc. Am.
140
,
3862
3873
(
2016
).
25.
M. S.
Ureda
, “
Analysis of loudspeaker line arrays
,”
J. Audio Eng. Soc.
52
,
467
795
(
2004
).
26.
D. B.
Keele
, Jr.
, “
A performance ranking of seven different types of loudspeaker line arrays
,” in
Audio Engineering Society Convention
(
2010
), San Francisco, p.
129
.
27.
J. M.
Gattas
,
W.
Wu
, and
Z.
You
, “
Miura-base rigid origami: Parameterizations of first-level derivative and piecewise geometries
,”
J. Mech. Des.
135
,
111011
(
2013
).
28.
J. M.
Gattas
and
Z.
You
, “
Geometric assembly of rigid-foldable morphing sandwich structures
,”
Eng. Struct.
94
,
149
159
(
2015
).
29.
M.
Schenk
and
S. D.
Guest
, “
Geometry of Miura-folded metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
3276
3281
(
2013
).
30.
K. B.
Ocheltree
and
L. A.
Frizzell
, “
Sound field calculation for rectangular sources
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
36
,
242
248
(
1989
).
31.
I.
Wolff
and
L.
Malter
, “
Directional radiation of sound
,”
J. Acoust. Soc. Am.
2
,
201
241
(
1930
).
You do not currently have access to this content.