Measurements have been made near normal incidence of the two-dimensional spatial coherence of the acoustic field scattered from the lakebed in Seneca Lake, New York. In the test region, the lakebed consists of a series of sediment layers created by a sequence of distinct depositional processes. The spatial coherence length of the scattered field is shown to be dependent on the structure of the underlying sediment sequences. Significant ping-to-ping variability in the spatial coherence surface was also observed for each sediment sequence. This variability is quantified by a two-dimensional spatial coherence metric that measures the coherence lengths and asymmetric coherence surface orientation. The ping-to-ping variation of the surface asymmetry appears to be linked to the spatial isotropy of the sediment scattering strength. The scattering strength of the deepest observed sequence in the sub-bottom is the most spatially isotropic and the ping-to-ping variability of the coherence lengths and surface orientations are random. The scattering strength of the shallower sequences is spatially anisotropic and the coherence lengths and surface orientations show intervals of non-random ping-to-ping behavior.

1.
Bellettini
,
A.
, and
Pinto
,
M. A.
(
2002
). “
Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase centre antenna
,”
IEEE J. Oceanic Eng.
27
(
4
),
780
789
.
2.
Berkson
,
J.
,
Dicus
,
R.
,
Field
,
R.
,
Morris
,
G.
, and
Anderson
,
R.
(
1980
). “
Measurements of spatial coherence of bottom-interacting sound in the Tagus Abyssal Plain
,” in
Bottom-Interacting Ocean Acoustics
, edited by
W. A.
Kuperman
and
F. B.
Jensen
, Vol.
5
of NATO Conference Series (
Springer
,
New York
), pp.
623
641
.
3.
Berkson
,
J. M.
(
1980
). “
Measurements of coherence of sound reflected from ocean sediments
,”
J. Acoust. Soc. Am.
68
(
5
),
1436
1441
.
4.
Boltryk
,
P. J.
,
Hill
,
M.
,
Keary
,
A. C.
, and
White
,
P. R.
(
2004
). “
Surface fitting for improving the resolution of peak estimation on a sparsely sampled two-dimensional surface with high levels of variance, for an acoustic velocity log
,”
Meas. Sci. Technol.
15
(
3
),
581
591
.
5.
Born
,
M.
, and
Wolf
,
E.
(
1999
).
Principles of Optics
, 7th ed. (
Cambridge University Press
,
New York
), p.
554
.
6.
Brock
,
E. M.
(
1990
). “
Error analysis of correlation logs
,” in
Proceedings of the IEE Colloquium on Inertial Navigation Sensor Development
, January 9, London, UK, pp.
6/1
6/7
.
7.
Brown
,
D. C.
(
2017
). “
Modeling and measurement of spatial coherence for normal incidence seafloor scattering
,” Ph.D. thesis,
The Pennsylvania State University
, College Station, PA.
8.
Brown
,
D. C.
,
Brownstead
,
C. F.
,
Gabrielson
,
T. B.
, and
Lyons
,
A. P.
(
2017
). “
A metric for characterization of two-dimensional spatial coherence
,”
J. Acoust. Soc. Am.
142
(
3
),
EL313
EL318
.
9.
Bryan
,
G. M.
(
1980
). “
The hydrophone-pinger experiment
,”
J. Acoust. Soc. Am.
68
(
5
),
1403
1408
.
10.
Carey
,
W. M.
(
1998
). “
The determination of signal coherence length based on signal coherence and gain measurements in deep and shallow water
,”
J. Acoust. Soc. Am.
104
(
2
),
831
837
.
11.
Claerbout
,
J. F.
(
1985
).
Imaging the Earth's Interior
(
Blackwell Science Inc.
,
New York
), pp.
7
8
.
12.
Clay
,
C. S.
(
1966
). “
Coherent reflection of sound from the ocean bottom
,”
J. Geophys. Res.
71
(
8
),
2037
2046
, .
13.
Coates
,
D. R.
(
1968
). “
Finger lakes
,” in
Geomorphology, Encyclopedia of Earth Science
(
Springer
Berlin-Heidelberg
), pp.
351
357
.
14.
Curtin
,
T. M.
,
Morgan
,
C. K.
,
Petrick
,
B.
,
Lyons
,
D.
,
Crocker
,
M.
,
Rogers
,
C. E.
, and
Baker
,
A. P.
(
2008
). “
Reconstructing periods of enhanced precipitation during the late glacial and holocene in the Finger Lakes Region, NY
,”
Northeast. Geol. Environ. Sci.
30
(
4
),
277
288
.
15.
Dickey
,
F. R.
, and
Edward
,
J. A.
(
1978
). “
Velocity measurement using correlation sonar
,” in
Proceedings IEEE Position Location and Navigation Symposium
, Novemebr 6–9, San Diego, CA, pp.
255
264
.
16.
Eckart
,
C.
(
1953
). “
The scattering of sound from the sea surface
,”
J. Acoust. Soc. Am.
25
(
3
),
566
570
.
17.
Frazier
,
M. E.
(
1974
). “
Study of the properties of the outputs of a multielement sonar receiving array operating in a reverberant environment
,” Ph.D. thesis,
The University of Texas at Austin
, Austin, TX.
18.
Guillon
,
L.
,
Holland
,
C.
, and
Barber
,
C.
(
2011
). “
Cross-spectral analysis of midfrequency acoustic waves reflected by the seafloor
,”
IEEE J. Ocean. Eng.
36
(
2
),
248
258
.
19.
Halfman
,
J. D.
(
2011
). “
Water quality of Seneca Lake, New York: A 2011 update
,” Technical Report Finger Lakes Institute of Hobart and William Smith Colleges.
20.
Halfman
,
J. D.
, and
Herrick
,
D. T.
(
1998
). “
Mass movement and reworking of late glacial and postglacial sediments in northern Seneca Lake, New York
,”
Northeast. Geol. Environ. Sci.
20
,
227
241
.
21.
Harris
,
F.
(
1978
). “
On the use of windows for harmonic analysis with the discrete Fourier transform
,”
Proc. IEEE
66
(
1
),
51
83
.
22.
Harrison
,
C. H.
(
1971
). “
Radio-echo sounding: Focusing effects in wavy strata
,”
Geophys. J. Int.
24
(
4
),
383
400
.
23.
Jackson
,
D. R.
, and
Moravan
,
K. Y.
(
1984
). “
Horizontal spatial coherence of ocean reverberation
,”
J. Acoust. Soc. Am.
75
(
2
),
428
436
.
24.
Ludlam
,
S. D.
(
1967
). “
Sedimentation in Cayuga Lake, New York
,”
Limnol. Oceanogr.
12
(
4
),
618
632
.
25.
Lynch
,
J. F.
,
Duda
,
T. F.
,
Siegmann
,
W. L.
,
Holmes
,
J.
, and
Newhall
,
A. E.
(
2013
). “
The Carey Number in shallow water acoustics
,” in
Proceedings of the 1st International Conference and Exhibition on Underwater Acoustics
, June 23–28, Corfu, Greece, pp.
1149
1160
.
26.
Lyons
,
A. P.
, and
Weber
,
T. C.
(
2007
). “
A multibeam sonar survey for benthic lake habitat: Assessing the impact of invasive mussels in Seneca Lake, New York
,” in
Proceedings of the International Conference on Underwater Acoustic Measurements
, June 25–29, Heraklion, Crete, Greece, pp.
871
876
.
27.
Mullins
,
H. T.
, and
Hinchey
,
E. J.
(
1989
). “
Erosion and infill of New York Finger Lakes: Implications for Laurentide ice sheet deglaciation
,”
Geology
17
(
7
),
622
625
.
28.
Mullins
,
H. T.
,
Hinchey
,
E. J.
,
Wellner
,
R. W.
,
Stephens
,
D. B.
,
Anderson
,
W. T.
,
Dwyer
,
T. R.
, and
Hine
,
A. C.
(
1996
). “
Seismic stratigraphy of the Finger Lakes: A continental record of Heinrich event H-1 and Laurentide ice sheet instability
,”
Geol. Soc. Am. Special Papers
311
,
1
35
.
29.
Schock
,
S.
,
Tellier
,
A.
,
Wulf
,
J.
,
Sara
,
J.
, and
Ericksen
,
M.
(
2001
). “
Buried object scanning sonar
,”
IEEE J. Ocean. Eng.
26
(
4
),
677
689
.
30.
Smith
,
B. V.
, and
Atkins
,
P. R.
(
1991
). “
Horizontal spatial correlation of bottom reverberation for normal incidence
,”
J. Acoust. Soc. Am.
89
(
5
),
2197
2206
.
31.
Stewart
,
A.
, and
Ord
,
J. K.
(
1994
).
Kendall's Advanced Theory of Statistics
(
Halsted Press
,
New York
), Vol. 1, p.
565
.
32.
Tang
,
D.
, and
Frisk
,
G. V.
(
1995
). “
Spatial correlation of acoustic waves scattered from a random ocean bottom
,”
J. Acoust. Soc. Am.
97
(
5
),
2783
2803
.
33.
Urick
,
R. J.
, and
Lund
,
G. R.
(
1964
). “
Vertical coherence of explosive reverberation
,”
J. Acoust. Soc. Am.
36
(
11
),
2164
2170
.
34.
Weber
,
T. C.
, and
Lyons
,
A. P.
(
2006
). “
A multibeam survey of mid-Seneca Lake: Bathymetry, backscatter, and invasive species
,” in
Proceedings of the (FLRC)
, November 17, Geneva, NY, p.
380
.
35.
Wilson
,
G. R.
(
1982
). “
Comparison of the measured covariance of surface reverberation for horizontal and vertical arrays
,”
J. Acoust. Soc. Am.
72
(
6
),
1905
1910
.
36.
Wilson
,
G. R.
, and
Frazier
,
M. E.
(
1983
). “
Horizontal covariance of surface reverberation: Comparison of a point scatterer model to experiment
,”
J. Acoust. Soc. Am.
73
(
3
),
749
760
.
You do not currently have access to this content.