Current active noise control systems can cancel noises in a duct effectively. However, they are insufficient for suppressing complex noise fields in time-varying rooms. This paper develops an active noise control system that can cancel tonal noise fields produced by a primary source in a room. The problem of tonal noise field control is formulated as estimating and canceling the outgoing field on a sphere surrounding the primary source. The proposed system limits the energy of the primary source radiating out of the sphere, thereby creating a global quiet zone inside the room. In addition, it removes the need for online secondary path estimation with reduced influence on desired sound fields in the room. A method for estimating the outgoing field on a sphere is presented, together with a wave-domain algorithm for controlling the outgoing field. Simulations and hardware demonstrations show the proposed system can reduce tonal noise fields in a room and over a wide frequency range.

1.
S. M.
Kuo
and
D. R.
Morgan
, “
Active noise control: A tutorial review
,”
Proc. IEEE
87
(
6
),
943
973
(
1999
).
2.
S. J.
Elliott
,
I. M.
Stothers
, and
P. A.
Nelson
, “
A multiple error LMS algorithm and its application to the active control of sound and vibration
,”
IEEE Trans. Acoust. Speech Signal Process.
35
(
10
),
1423
1434
(
1987
).
3.
C.
Bao
,
P.
Sas
, and
H.
Van Brussel
, “
Adaptive active control of noise in 3-D reverberant enclosures
,”
J. Sound Vib.
161
(
3
),
501
514
(
1993
).
4.
A. J.
Kempton
, “
The ambiguity of acoustic sources—a possibility for active control?
,”
J. Sound Vib.
48
(
4
),
475
483
(
1976
).
5.
P. A.
Nelson
,
A. R. D.
Curtis
,
S. J.
Elliott
, and
A. J.
Bullmore
, “
The active minimization of harmonic enclosed sound fields, part i: Theory
,”
J. Sound Vib.
117
(
1
),
1
13
(
1987
).
6.
A.
Montazeri
,
J.
Poshtan
, and
M. H.
Kahaei
, “
Modal analysis for global control of broadband noise in a rectangular enclosure
,”
J. Low Freq. Noise Vib. Active Cont.
26
(
2
),
91
104
(
2007
).
7.
T.
Martin
and
A.
Roure
, “
Optimization of an active noise control system using spherical harmonics expansion of the primary field
,”
J. Sound Vib.
201
(
5
),
577
593
(
1997
).
8.
B.
Rafaely
, “
Spherical loudspeaker array for local active control of sound
,”
J. Acoust. Soc. Am.
125
(
5
),
3006
3017
(
2009
).
9.
E. G.
Williams
,
Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography
(
Academic Press
,
New York
,
1999
), Chaps. 6 and 7, pp.
183
249
.
10.
T.
Abhayapala
, “
Modal analysis and synthesis of broadband nearfield beamforming arrays
,” Ph.D. thesis,
The Australian National University
,
1999
.
11.
H.
Chen
,
T. D.
Abhayapala
, and
W.
Zhang
, “
Active noise control over space: A wave domain approach
,”
J. Acoust. Soc. Am.
138
(
5
),
3081
3092
(
2015
).
12.
J.
Zhang
,
T. D.
Abhayapala
,
W.
Zhang
,
P. N.
Samarasinghe
, and
S.
Jiang
, “
Active noise control over space: A wave domain approach
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
26
(
4
),
774
786
(
2018
).
13.
Y.
Huang
,
J.
Benesty
, and
J.
Chen
, “
Identification of acoustic mimo systems: Challenges and opportunities
,”
Signal Process.
86
(
6
),
1278
1295
(
2006
).
14.
A.
Fahim
,
P. N.
Samarasinghe
, and
T. D.
Abhayapala
, “
Sound field separation in a mixed acoustic environment using a sparse array of higher order spherical microphones
,” in
Proceedings of the Hands-free Speech Communications and Microphone Arrays
(
2017
), pp.
151
155
.
15.
A. J.
Berkhout
,
D.
de Vries
, and
P.
Vogel
, “
Acoustic control by wave field synthesis
,”
J. Acoust. Soc. Am.
93
(
5
),
2764
2778
(
1993
).
16.

At low frequency range, where the wavelength of the noise is large compared with the size of the source, the scattered sound field is negligible (Ref. 17).

17.
M.
Melon
,
C.
Langrenne
,
P.
Herzog
, and
A.
Garcia
, “
Evaluation of a method for the measurement of subwoofers in usual rooms
,”
J. Acoust. Soc. Am.
127
(
1
),
256
263
(
2010
).
18.
D. B.
Ward
and
T. D.
Abhayapala
, “
Reproduction of a plane-wave sound field using an array of loudspeakers
,”
IEEE Trans. Speech Audio Process.
9
(
6
),
697
707
(
2001
).
19.
T. D.
Abhayapala
,
T. S.
Pollock
, and
R. A.
Kennedy
, “
Characterization of 3D spatial wireless channels
,”
IEEE 58th Vehicular Technology Conference
(
2003
), Vol. 1, pp.
123
127
.
20.
N. A.
Gumerov
and
R.
Duraiswami
,
Fast Multipole Methods for the Helmholtz Equation in Three Dimensions
(
Elsevier
,
London
,
2005
), pp.
1
520
.
21.
R. A.
Kennedy
,
P.
Sadeghi
,
T. D.
Thushara
, and
H. M.
Jones
, “
Intrinsic limits of dimensionality and richness in random multipath fields
,”
IEEE Trans. Signal Process.
55
(
6
),
2542
2556
(
2007
).
22.
W.
Zhang
,
T. D.
Thushara
,
R. A.
Kenndy
, and
R.
Duraiswami
, “
Insights into head-related transfer function: Spatial dimensionality and continuous representation
,”
J. Acoust. Soc. Am.
127
(
4
),
2347
2357
(
2010
).
23.
B.
Rafaely
,
Fundamentals of Spherical Array Processing
(
Springer
,
New York
,
2015
), Chap. 3, pp.
57
78
.
24.
X.
Qiu
,
C. H.
Hanson
, and
X.
Li
, “
A comparison of near-field acoustic error sensing strategies for the active control of harmonic free field sound radiation
,”
J. Sound Vib.
215
(
1
),
81
103
(
1998
).
25.
N.
Han
and
X.
Qiu
, “
A study of sound intensity control for active noise barriers
,”
Appl. Acoust.
68
(
10
),
1297
1306
(
2007
).
26.

In this paper, we have skipped the time index t whenever possible to simplify the notations.

27.
H.
Kuttruff
,
Room Acoustics
(
CRC Press
,
London
, 2000), Chaps. 2–5, pp.
35
159
.
28.
J. B.
Allen
and
D. A.
Berkley
, “
Image method for efficiently simulating small-room acoustics
,”
J. Acoust. Soc. Am.
65
(
4
),
943
950
(
1979
).
29.
P. A.
Nelson
and
S. J.
Elliott
,
The Active Control of Sound
(
Pearson Higher Ed
,
New York
,
1991
), Chaps. 10–12, pp.
310
410
.
30.

We can use a microphone pair as the error sensor as shown in Sec. VI. The microphone pair can measure the noise pressure at two points. To make the comparison fair, we design the classical multichannel ANC system to cancel the noise pressure at 4 × 2 points.

31.

Due to their limited volume, the loudspeakers are unable to radiate very low frequency (f < 100 Hz) sound effectively. Thus the demonstrations are conducted for higher frequency, where 100 < f< 500 Hz.

You do not currently have access to this content.