Allen and Berkley's image source method (ISM) is proven to be a very useful and popular technique for simulating the acoustic room transfer function (RTF) in reverberant rooms. It is based on the assumption that the source and receiver of interest are both omnidirectional. With the inherent directional nature of practical loudspeakers and the increasing use of directional microphones, the above assumption is often invalid. The main objective of this paper is to generalize the frequency domain ISM in the spherical harmonics domain such that it could simulate the RTF between practical transducers with higher-order directivity. This is achieved by decomposing transducer directivity patterns in terms of spherical harmonics and by applying the concept of image sources in spherical harmonics based propagation patterns. Therefore, from now on, any transducer can be modeled in the spherical harmonics domain with a realistic directivity pattern and incorporated with the proposed method to simulate room acoustics more accurately. We show that the proposed generalization also has an alternate use in terms of enabling RTF simulations for moving point-transducers inside pre-defined source and receiver regions.

1.
A.
Krokstad
,
S.
Strom
, and
S.
Sørsdal
, “
Calculating the acoustical room response by the use of a ray tracing technique
,”
J. Sound Vib.
8
(
1
),
118
125
(
1968
).
2.
T.
Funkhouser
,
N.
Tsingos
,
I.
Carlbom
,
G.
Elko
,
M.
Sondhi
,
J. E.
West
,
G.
Pingali
,
P.
Min
, and
A.
Ngan
, “
A beam tracing method for interactive architectural acoustics
,”
J. Acoust. Soc. Am.
115
(
2
),
739
756
(
2004
).
3.
F.
Antonacci
,
M.
Foco
,
A.
Sarti
, and
S.
Tubaro
, “
Fast tracing of acoustic beams and paths through visibility lookup
,”
IEEE Trans. Audio Speech, Lang. Process.
16
(
4
),
812
824
(
2008
).
4.
D.
Marković
,
F.
Antonacci
,
A.
Sarti
, and
S.
Tubaro
, “
3D beam tracing based on visibility lookup for interactive acoustic modeling
,”
IEEE Trans. Vis. Comput. Graph.
22
(
10
),
2262
2274
(
2016
).
5.
L.
Savioja
and
U. P.
Svensson
, “
Overview of geometrical room acoustic modeling techniques
,”
J. Acoust. Soc. Am.
138
(
2
),
708
730
(
2015
).
6.
A.
Craggs
,
Acoustic Modeling: Finite Element Method in Handbook of Acoustics
, edited by
M. J.
Crocker
(
Wiley
,
New York
,
1998
), pp.
149
156
.
7.
D.
Murphy
,
A.
Kelloniemi
,
J.
Mullen
, and
S.
Shelley
, “
Acoustic modeling using the digital waveguide mesh
,”
IEEE Signal Process. Mag.
24
(
2
),
55
66
(
2007
).
8.
S. A.
Van Duyne
and
J. O.
Smith
, “
Physical modeling with the 2-D digital waveguide mesh
,” in
Proceedings of the International Computer Music Conference
, International Computer Music Association (
1993
), p.
40
.
9.
T.
Betlehem
and
T. D.
Abhayapala
, “
Theory and design of sound field reproduction in reverberant rooms
,”
J. Acoust. Soc. Am.
117
(
4
),
2100
2111
(
2005
).
10.
D.
Jarrett
,
E.
Habets
,
M.
Thomas
, and
P.
Naylor
, “
Rigid sphere room impulse response simulation: Algorithm and applications
,”
J. Acoust. Soc. Am.
132
(
3
),
1462
1472
(
2012
).
11.
P. N.
Samarasinghe
,
T. D.
Abhayapala
,
M.
Poletti
, and
T.
Betlehem
, “
An efficient parameterization of the room transfer function
,”
IEEE/ACM Trans. Audio Speech, Lang. Process. (TASLP)
23
(
12
),
2217
2227
(
2015
).
12.
P. N.
Samarasinghe
,
T. D.
Abhayapala
,
M. A.
Polettfi
, and
T.
Betlehem
, “
On room impulse response between arbitrary points: An efficient parameterization
,” in
IEEE International Symposium on Communications, Control and Signal Processing (ISCCSP)
(
2014
), pp.
153
156
.
13.
J.
Allen
and
D.
Berkley
, “
Image method for efficiently simulating small-room acoustics
,”
J. Acoust. Soc. Am.
65
,
943
950
(
1979
).
14.
T.
Ajdler
,
L.
Sbaiz
, and
M.
Vetterli
, “
The plenacoustic function and its sampling
,”
IEEE Trans. Signal Process.
54
(
10
),
3790
3804
(
2006
).
15.
M.
Kuster
, “
Reliability of estimating the room volume from a single room impulse response
,”
J. Acoust. Soc. Am.
124
(
2
),
982
993
(
2008
).
16.
T.
Betlehem
and
M. A.
Poletti
, “
Two dimensional sound field reproduction using higher order sources to exploit room reflections
,”
J. Acoust. Soc. Am.
135
(
4
),
1820
1833
(
2014
).
17.
M. A.
Akeroyd
,
S.
Gatehouse
, and
J.
Blaschke
, “
The detection of differences in the cues to distance by elderly hearing-impaired listeners
,”
J. Acoust. Soc. Am.
121
(
2
),
1077
1089
(
2007
).
18.
S. F.
Poissant
,
N. A.
Whitmal
 III
, and
R. L.
Freyman
, “
Effects of reverberation and masking on speech intelligibility in cochlear implant simulations
,”
J. Acoust. Soc. Am.
119
(
3
),
1606
1615
(
2006
).
19.
E. A.
Habets
,
S.
Gannot
,
I.
Cohen
, and
P. C.
Sommen
, “
Joint dereverberation and residual echo suppression of speech signals in noisy environments
,”
IEEE Trans. Audio Speech, Lang. Process.
16
(
8
),
1433
1451
(
2008
).
20.
N. H.
Adams
and
G. H.
Wakefield
, “
State-space synthesis of virtual auditory space
,”
IEEE Trans. Audio Speech, Lang. Process.
16
(
5
),
881
890
(
2008
).
21.
T.
Lokki
,
L.
Savioja
,
R.
Vaananen
,
J.
Huopaniemi
, and
T.
Takala
, “
Creating interactive virtual auditory environments
,”
IEEE Comput. Graph. Appl.
22
(
4
),
49
57
(
2002
).
22.
D.
Li
and
M.
Hodgson
, “
Optimal active noise control in large rooms using a ‘locally global’ control strategy
,”
J. Acoust. Soc. Am.
118
(
6
),
3653
3661
(
2005
).
23.
M.
Vorlander
, “
Simulation of the transient and steady state sound propagation in rooms using a new combined ray tracing/image source algorithm
,”
J. Acoust. Soc. Am.
86
(
1
),
172
178
(
1989
).
24.
R.
Duraiswami
,
D.
Zotkin
, and
N.
Gumerov
, “
Fast evaluation of the room transfer function using multipole expansion
,”
IEEE Trans. Audio Speech, Lang. Process.
15
(
2
),
565
576
(
2007
).
25.
E. A.
Lehmann
and
A. M.
Johansson
, “
Diffuse reverberation model for efficient image-source simulation of room impulse responses
,”
IEEE Trans. Audio Speech, Lang. Process.
18
(
6
),
1429
1439
(
2010
).
26.
J.-H.
Pan
,
C.-C.
Bao
,
B.
Bu
, and
M.-S.
Jia
, “
Measurement of the acoustic transfer function using compressed sensing techniques
,” in
2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)
, IEEE (
2016
), pp.
1
4
.
27.
N.
Antonello
,
E.
De Sena
,
M.
Moonen
,
P. A.
Naylor
, and
T.
van Waterschoot
, “
Room impulse response interpolation using a sparse spatio-temporal representation of the sound field
,”
IEEE/ACM Trans. Audio Speech, Lang. Process.
25
,
1929
1941
(
2017
).
28.
T.
Abhayapala
and
D.
Ward
, “
Theory and design of high order sound field microphones using spherical microphone array
,” in
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
(
2002
), Vol. II, pp.
1949
1952
.
29.
M. A.
Poletti
,
T.
Betlehem
, and
T. D.
Abhayapala
, “
Higher-order loudspeakers and active compensation for improved 2D sound field reproduction in rooms
,”
J. Audio Eng. Soc.
63
(
1/2
),
31
45
(
2015
).
30.
M.
Poletti
,
T.
Abhayapala
, and
P.
Samarasinghe
, “
Interior and exterior sound field control using two dimensional higher-order variable-directivity sources
,”
J. Acoust. Soc. Am.
131
(
5
),
3814
3823
(
2012
).
31.
E.
Habets
, “
Room impulse response generator
,”
Technische Universiteit Eindhoven, Tech. Rep.
2
,
1
(
2006
).
32.
E.
Williams
,
Fourier Acoustics: Sound Radiation and Nearfield Acoustic Holography
(
Academic
,
London, UK
), pp.
115
125
.
33.
D. B.
Ward
and
T. D.
Abhayapala
, “
Reproduction of a plane-wave sound field using an array of loudspeakers
,”
IEEE Trans. Speech Audio Process.
9
(
6
),
697
707
(
2001
).
34.
P. N.
Samarasinghe
and
T. D.
Abhayapala
, “
Room transfer function measurement from a directional loudspeaker
,” in
IEEE International Workshop on Acoustic Signal Enhancement (IWAENC)
, Xian, China (
2016
), pp.
1
5
.
35.
W.
Zhang
,
T. D.
Abhayapala
,
R. A.
Kennedy
, and
R.
Duraiswami
, “
Insights into head-related transfer function: Spatial dimensionality and continuous representation
,”
J. Acoust. Soc. Am.
127
(
4
),
2347
2357
(
2010
).
36.
W. J.
Thompson
,
Angular Momentum
(
Wiley
,
New York
,
2008
).
37.
W.
Lin
and
L.
Ballentine
, “
Quantum tunneling and chaos in a driven anharmonic oscillator
,”
Phys. Rev. Lett.
65
(
24
),
2927
2930
(
1990
).
38.
P.
Martin
,
Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles
(
Cambridge University Press
,
Cambridge
,
2006
), p.
107
.
39.
A. R.
Edmonds
,
Angular Momentum in Quantum Mechanics
(
Princeton University Press
,
Princeton, NJ
,
1996
).
You do not currently have access to this content.