Different computational models have been developed to study the interaural time difference (ITD) perception. However, only few have used a physiologically inspired architecture to study ITD discrimination. Furthermore, they do not include aspects of hearing impairment. In this work, a framework was developed to predict ITD thresholds in listeners with normal and impaired hearing. It combines the physiologically inspired model of the auditory periphery proposed by Zilany, Bruce, Nelson, and Carney [(2009). J. Acoust. Soc. Am. 126(5), 2390–2412] as a front end with a coincidence detection stage and a neurometric decision device as a back end. It was validated by comparing its predictions against behavioral data for narrowband stimuli from literature. The framework is able to model ITD discrimination of normal-hearing and hearing-impaired listeners at a group level. Additionally, it was used to explore the effect of different proportions of outer- and inner-hair cell impairment on ITD discrimination.

1.
Akeroyd
,
M. A.
(
2014
). “
An overview of the major phenomena of the localization of sound sources by normal-hearing, hearing-impaired, and aided listeners
,”
Trends Hear.
18
,
1
7
.
2.
Akeroyd
,
M. A.
, and
Whitmer
,
W. M.
(
2016
). “
Spatial hearing and hearing aids
,” in
Hearing Aids
(
Springer
,
Berlin
), Chap. 7, pp.
181
215
.
3.
Ashida
,
G.
,
Funabiki
,
K.
, and
Kretzberg
,
J.
(
2015
). “
Minimal conductance-based model of auditory coincidence detector neurons
,”
PloS One
10
(
4
),
e0122796
.
4.
Ashida
,
G.
,
Tollin
,
D. J.
, and
Kretzberg
,
J.
(
2017
). “
Physiological models of the lateral superior olive
,”
PLoS Comput. Biol.
13
(
12
),
e1005903
.
5.
Baumgartner
,
R.
,
Majdak
,
P.
, and
Laback
,
B.
(
2016
). “
Modeling the effects of sensorineural hearing loss on sound localization in the median plane
,”
Trends Hear.
20
,
1
11
.
6.
Bernstein
,
L. R.
(
2001
). “
Auditory processing of interaural timing information: New insights
,”
J. Neurosci. Res.
66
(
6
),
1035
1046
.
7.
Bernstein
,
L. R.
, and
Trahiotis
,
C.
(
2002
).
“Enhancing sensitivity to interaural delays at high frequencies by using ‘transposed stimuli
,’ ”
J. Acoust. Soc. Am.
112
(
3
),
1026
1036
.
8.
Bernstein
,
L. R.
, and
Trahiotis
,
C.
(
2011
). “
Lateralization produced by envelope-based interaural temporal disparities of high-frequency, raised-sine stimuli: Empirical data and modeling
,”
J. Acoust. Soc. Am.
129
(
3
),
1501
1508
.
9.
Bernstein
,
L. R.
, and
Trahiotis
,
C.
(
2012
). “
Lateralization produced by interaural temporal and intensitive disparities of high-frequency, raised-sine stimuli: Data and modeling
,”
J. Acoust. Soc. Am.
131
(
1
),
409
415
.
10.
Bidelman
,
G. M.
, and
Heinz
,
M. G.
(
2011
). “
Auditory-nerve responses predict pitch attributes related to musical consonance-dissonance for normal and impaired hearing
,”
J. Acoust. Soc. Am.
130
(
3
),
1488
1502
.
11.
Blauert
,
J.
(
1997
).
Spatial Hearing—The Psychophysics of Human Sound Localization
(
The MIT Press
,
Cambridge, MA
).
12.
Brown
,
A. D.
, and
Tollin
,
D. J.
(
2016
). “
Slow temporal integration enables robust neural coding and perception of a cue to sound source location
,”
J. Neurosci.
36
(
38
),
9908
9921
.
13.
Bruce
,
I. C.
,
Léger
,
A. C.
,
Moore
,
B. C.
, and
Lorenzi
,
C.
(
2013
). “
Physiological prediction of masking release for normal-hearing and hearing-impaired listeners
,” in
Proceedings of Meetings on Acoustics
, Acoustical Society of America, Montreal, Canada, Vol. 19, pp.
1
8
.
14.
Bruce
,
I. C.
,
Sachs
,
M. B.
, and
Young
,
E. D.
(
2003
). “
An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses
,”
J. Acoust. Soc. Am.
113
(
1
),
369
388
.
15.
Brughera
,
A.
,
Dunai
,
L.
, and
Hartmann
,
W. M.
(
2013
). “
Human interaural time difference thresholds for sine tones: The high-frequency limit
,”
J. Acoust. Soc. Am.
133
(
5
),
2839
2855
.
16.
Colburn
,
H.
, and
Latimer
,
J.
(
1978
). “
Theory of binaural interaction based on auditory-nerve data. III. Joint dependence on interaural time and amplitude differences in discrimination and detection
,”
J. Acoust. Soc. Am.
64
(
1
),
95
106
.
17.
Colburn
,
H. S.
(
1973
). “
Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination
,”
J. Acoust. Soc. Am.
54
(
6
),
1458
1470
.
18.
Colburn
,
H. S.
(
1977
). “
Theory of binaural interaction based on auditory-nerve data. II. Detection of tones in noise
,”
J. Acoust. Soc. Am.
61
(
2
),
525
533
.
19.
Colburn
,
H. S.
,
Chung
,
Y.
,
Zhou
,
Y.
, and
Brughera
,
A.
(
2009
). “
Models of brainstem responses to bilateral electrical stimulation
,”
J. Assoc. Res. Otolaryngol.
10
(
1
),
91
110
.
20.
Colburn
,
H. S.
, and
Durlach
,
N. I.
(
1978
). “
Models of binaural interaction
,” in
Handbook of Perception, IV (Hearing)
, edited by
E.
Carterette
and
M.
Friedman
(
Academic Press
,
Colburn and Durlach, New York
), pp.
467
518
.
21.
Colburn
,
H. S.
,
Shinn-Cunningham
,
B.
,
Kidd
,
G.
, Jr.
, and
Durlach
,
N.
(
2006
). “
The perceptual consequences of binaural hearing: Las consecuencias perceptuales de la audición binaural
,”
Int. J. Audiol.
45
,
34
44
.
22.
Colburn
,
H. S.
,
Yan-an
,
H.
, and
Culotta
,
C. P.
(
1990
). “
Coincidence model of MSO responses
,”
Hear. Res.
49
(
1–3
),
335
346
.
23.
Dietz
,
M.
,
Ewert
,
S. D.
, and
Hohmann
,
V.
(
2009
). “
Lateralization of stimuli with independent fine-structure and envelope-based temporal disparities
,”
J. Acoust. Soc. Am.
125
(
3
),
1622
1635
.
24.
Dietz
,
M.
,
Lestang
,
J.-H.
,
Majdak
,
P.
,
Stern
,
R. M.
,
Marquardt
,
T.
,
Ewert
,
S. D.
,
Hartmann
,
W. M.
, and
Goodman
,
D. F.
(
2018
). “
A framework for testing and comparing binaural models
,”
Hear. Res.
360
,
92
106
.
25.
Durlach
,
N.
,
Thompson
,
C.
, and
Colburn
,
H.
(
1981
). “
Binaural interaction in impaired listeners: A review of past research
,”
Audiology
20
(
3
),
181
211
.
26.
Ellinger
,
R. L.
,
Jakien
,
K. M.
, and
Gallun
,
F. J.
(
2017
). “
The role of interaural differences on speech intelligibility in complex multi-talker environments
,”
J. Acoust. Soc. Am.
141
(
2
),
EL170
EL176
.
27.
Franken
,
T. P.
,
Bremen
,
P.
, and
Joris
,
P. X.
(
2014
). “
Coincidence detection in the medial superior olive: Mechanistic implications of an analysis of input spiking patterns
,”
Front. Neural Circ.
8
,
42
.
28.
Gabriel
,
K. J.
,
Koehnke
,
J.
, and
Colburn
,
H. S.
(
1992
). “
Frequency dependence of binaural performance in listeners with impaired binaural hearing
,”
J. Acoust. Soc. Am.
91
(
1
),
336
347
.
29.
Gai
,
Y.
,
Kotak
,
V. C.
,
Sanes
,
D. H.
, and
Rinzel
,
J.
(
2014
). “
On the localization of complex sounds: Temporal encoding based on input-slope coincidence detection of envelopes
,”
J. Neurophysiol.
112
(
4
),
802
813
.
30.
Gallun
,
F. J.
,
Mcmillan
,
G. P.
,
Molis
,
M. R.
,
Kampel
,
S. D.
,
Dann
,
S. M.
, and
Konrad-Martin
,
D.
(
2014
). “
Relating age and hearing loss to monaural, bilateral, and binaural temporal sensitivity
,”
Audit. Cogn. Neurosci.
8
,
172
.
31.
Green
,
D. M.
, and
Swets
,
J. A.
(
1966
).
Signal Detection Theory and Psychophysics
(
Wiley
,
New York
).
32.
Grothe
,
B.
,
Pecka
,
M.
, and
McAlpine
,
D.
(
2010
). “
Mechanisms of sound localization in mammals
,”
Physiol. Rev.
90
(
3
),
983
1012
.
33.
Grün
,
S.
(
2009
). “
Data-driven significance estimation for precise spike correlation
,”
J. Neurophysiol.
101
(
3
),
1126
1140
.
34.
Hancock
,
K. E.
, and
Delgutte
,
B.
(
2004
). “
A physiologically based model of interaural time difference discrimination
,”
J. Neurosci.
24
(
32
),
7110
7117
.
35.
Hawkins
,
D. B.
, and
Wightman
,
F. L.
(
1980
). “
Interaural time discrimination ability of listeners with sensorineural hearing loss
,”
Audiology
19
(
6
),
495
507
.
36.
Heinz
,
M. G.
(
2015
). “
Neural modelling to relate individual differences in physiological and perceptual responses with sensorineural hearing loss
,” in
Proceedings of the International Symposium on Auditory and Audiological Research
, Vol. 5, pp.
137
148
.
37.
Heinz
,
M. G.
, and
Swaminathan
,
J.
(
2009
). “
Quantifying envelope and fine-structure coding in auditory nerve responses to chimaeric speech
,”
J. Assoc. Res. Otolaryngol.
10
(
3
),
407
423
.
38.
Jeffress
,
L. A.
(
1948
). “
A place theory of sound localization
,”
J. Compar. Physiol. Psychol.
41
(
1
),
35
39
.
39.
Jennings
,
S. G.
,
Heinz
,
M. G.
, and
Strickland
,
E. A.
(
2011
). “
Evaluating adaptation and olivocochlear efferent feedback as potential explanations of psychophysical overshoot
,”
J. Assoc. Res. Otolaryngol.
12
(
3
),
345
360
.
40.
Jennings
,
S. G.
, and
Strickland
,
E. A.
(
2012
). “
Evaluating the effects of olivocochlear feedback on psychophysical measures of frequency selectivity
,”
J. Acoust. Soc. Am.
132
(
4
),
2483
2496
.
41.
Johnson
,
B. W.
, and
Hautus
,
M. J.
(
2010
). “
Processing of binaural spatial information in human auditory cortex: Neuromagnetic responses to interaural timing and level differences
,”
Neuropsychologia
48
(
9
),
2610
2619
.
42.
Johnson
,
D. H.
(
1980
). “
The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones
,”
J. Acoust. Soc. Am.
68
(
4
),
1115
1122
.
43.
Joris
,
P. X.
(
2003
). “
Interaural time sensitivity dominated by cochlea-induced envelope patterns
,”
J. Neurosci.
23
(
15
),
6345
6350
.
44.
Joris
,
P. X.
,
Louage
,
D. H.
,
Cardoen
,
L.
, and
van der Heijden
,
M.
(
2006
). “
Correlation index: A new metric to quantify temporal coding
,”
Hear. Res.
216–217
,
19
30
.
45.
Joris
,
P. X.
,
van der Heijden
,
M.
,
Louage
,
D. H.
,
Van de Sande
,
B.
, and
Van Kerckhoven
,
C.
(
2005
). “
Dependence of binaural and cochlear ‘best delays’ on characteristic frequency
,” in
Auditory Signal Processing
(
Springer
,
Berlin
), pp.
477
483
.
46.
King
,
A.
,
Hopkins
,
K.
, and
Plack
,
C. J.
(
2014
). “
The effects of age and hearing loss on interaural phase difference discrimination
,”
J. Acoust. Soc. Am.
135
(
1
),
342
351
.
47.
Kirkwood
,
T.
(
1979
). “
Geometric mean and measures of dispersion
,”
Biometrics
19
,
908
909
.
48.
Kujawa
,
S. G.
, and
Liberman
,
M. C.
(
2015
). “
Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss
,”
Hear. Res.
330
,
191
199
.
49.
Kuwada
,
S.
,
Batra
,
R.
, and
Fitzpatrick
,
D. C.
(
1997
). “
Neural processing of binaural temporal cues
,” in
Binaural and Spatial Hearing in Real and Virtual Environments
(
Lawrence Erlbaum
,
Mahwah, NJ
), pp.
399
425
.
50.
Kuwada
,
S.
,
Stanford
,
T. R.
, and
Batra
,
R.
(
1987
). “
Interaural phase-sensitive units in the inferior colliculus of the unanesthetized rabbit: Effects of changing frequency
,”
J. Neurophysiol.
57
(
5
),
1338
1360
.
51.
Kuwada
,
S.
, and
Yin
,
T. C.
(
1983
). “
Binaural interaction in low-frequency neurons in inferior colliculus of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function
,”
J. Neurophysiol.
50
(
4
),
981
999
.
52.
Laback
,
B.
,
Dietz
,
M.
, and
Joris
,
P.
(
2017
). “
Temporal effects in interaural and sequential level difference perception
,”
J. Acoust. Soc. Am.
142
(
5
),
3267
3283
.
53.
Liberman
,
M. C.
(
1984
). “
Single-neuron labeling and chronic cochlear pathology. I. Threshold shift and characteristic-frequency shift
,”
Hear. Res.
16
(
1
),
33
41
.
54.
Liberman
,
M. C.
, and
Dodds
,
L. W.
(
1984
). “
Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves
,”
Hear. Res.
16
(
1
),
55
74
.
55.
Lindemann
,
W.
(
1986
). “
Extension of a binaural cross-correlation model by contralateral inhibition. I. Simulation of lateralization for stationary signals
,”
J. Acoust. Soc. Am.
80
(
6
),
1608
1622
.
56.
Lopez-Poveda
,
E. A.
, and
Johannesen
,
P. T.
(
2012
). “
Behavioral estimates of the contribution of inner and outer hair cell dysfunction to individualized audiometric loss
,”
J. Assoc. Res. Otolaryngol.
13
(
4
),
485
504
.
57.
Louage
,
D. H.
,
Joris
,
P. X.
, and
van der Heijden
,
M.
(
2006
). “
Decorrelation sensitivity of auditory nerve and anteroventral cochlear nucleus fibers to broadband and narrowband noise
,”
J. Neurosci.
26
(
1
),
96
108
.
58.
Louage
,
D. H.
,
van der Heijden
,
M.
, and
Joris
,
P. X.
(
2004
). “
Temporal properties of responses to broadband noise in the auditory nerve
,”
J. Neurophysiol.
91
(
5
),
2051
2065
.
59.
Macmillan
,
N. A.
, and
Creelman
,
C. D.
(
2004
).
Detection Theory: A User's Guide
(
Psychology Press
,
Hove, East Sussex
).
60.
McAlpine
,
D.
(
2005
). “
Creating a sense of auditory space
,”
J. Physiol.
566
(
1
),
21
28
.
61.
McAlpine
,
D.
,
Jiang
,
D.
, and
Palmer
,
A. R.
(
2001
). “
A neural code for low-frequency sound localization in mammals
,”
Nat. Neurosci.
4
(
4
),
396
401
.
62.
Mcgill
,
T. J.
, and
Schuknecht
,
H. F.
(
1976
). “
Human cochlear changes in noise induced hearing loss
,”
Laryngoscope
86
(
9
),
1293
1302
.
63.
Meddis
,
R.
(
1988
). “
Simulation of auditory–neural transduction: Further studies
,”
J. Acoust. Soc. Am.
83
(
3
),
1056
1063
.
64.
Miller
,
R. L.
,
Schilling
,
J. R.
,
Franck
,
K. R.
, and
Young
,
E. D.
(
1997
). “
Effects of acoustic trauma on the representation of the vowel /ε/ in cat auditory nerve fibers
,”
J. Acoust. Soc. Am.
101
(
6
),
3602
3616
.
65.
Moncada-Torres
,
A.
,
van Wieringen
,
A.
,
Bruce
,
I. C.
,
Wouters
,
J.
, and
Francart
,
T.
(
2017
). “
Predicting phoneme and word recognition in noise using a computational model of the auditory periphery
,”
J. Acoust. Soc. Am.
141
(
1
),
300
312
.
66.
Moore
,
B. C.
(
1996
). “
Perceptual consequences of cochlear hearing loss and their implications for the design of hearing aids
,”
Ear Hear.
17
(
2
),
133
161
.
67.
Moore
,
B. C. J.
(
2007
).
Cochlear Hearing Loss: Physiological, Psychological, and Technical Issues
(
Wiley Series in Human Communication Science
,
Chichester
).
68.
Palomäki
,
K. J.
,
Tiitinen
,
H.
,
Mäkinen
,
V.
,
May
,
P. J.
, and
Alku
,
P.
(
2005
). “
Spatial processing in human auditory cortex: The effects of 3D, ITD, and ILD stimulation techniques
,”
Cogn. Brain Res.
24
(
3
),
364
379
.
69.
Patterson
,
R. D.
,
Allerhand
,
M. H.
, and
Giguere
,
C.
(
1995
). “
Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform
,”
J. Acoust. Soc. Am.
98
(
4
),
1890
1894
.
70.
Peelle
,
J. E.
, and
Wingfield
,
A.
(
2016
). “
The neural consequences of age-related hearing loss
,”
Trends Neurosci.
39
(
7
),
486
497
.
71.
Phillips
,
D. P.
, and
Hall
,
S. E.
(
2005
). “
Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level
,”
Hear. Res.
202
(
1
),
188
199
.
72.
Plack
,
C. J.
,
Drga
,
V.
, and
Lopez-Poveda
,
E. A.
(
2004
). “
Inferred basilar-membrane response functions for listeners with mild to moderate sensorineural hearing loss
,”
J. Acoust. Soc. Am.
115
(
4
),
1684
1695
.
73.
Prokopiou
,
A.
,
Moncada-Torres
,
A.
,
Wouters
,
J.
, and
Francart
,
T.
(
2017
). “
Functional modelling of interaural time difference discrimination in acoustical and electrical hearing
,”
J. Neural Eng.
14
(
4
),
046021
.
74.
Remme
,
M. W.
,
Donato
,
R.
,
Mikiel-Hunter
,
J.
,
Ballestero
,
J. A.
,
Foster
,
S.
,
Rinzel
,
J.
, and
McAlpine
,
D.
(
2014
). “
Subthreshold resonance properties contribute to the efficient coding of auditory spatial cues
,”
Proc. Natl. Acad. Sci.
111
(
22
),
E2339
E2348
.
75.
Robles
,
L.
, and
Ruggero
,
M. A.
(
2001
). “
Mechanics of the mammalian cochlea
,”
Physiol. Rev.
81
(
3
),
1305
1352
.
76.
Saberi
,
K.
(
1995
). “
Some considerations on the use of adaptive methods for estimating interaural-delay thresholds
,”
J. Acoust. Soc. Am.
98
(
3
),
1803
1806
.
77.
Salminen
,
N. H.
,
Jones
,
S. J.
,
Christianson
,
G. B.
,
Marquardt
,
T.
, and
McAlpine
,
D.
(
2018
). “
A common periodic representation of interaural time differences in mammalian cortex
,”
NeuroImage
167
,
95
103
.
78.
Salvi
,
R.
,
Perry
,
J.
,
Hamernik
,
R. P.
, and
Henderson
,
D.
(
1982
). “
Relationships between cochlear pathologies and auditory nerve and behavioral responses following acoustic trauma
,” in
New Perspectives on Noise-Induced Hearing Loss
(
Raven
,
New York
), pp.
165
188
.
79.
Saremi
,
A.
,
Beutelmann
,
R.
,
Dietz
,
M.
,
Ashida
,
G.
,
Kretzberg
,
J.
, and
Verhulst
,
S.
(
2016
). “
A comparative study of seven human cochlear filter models
,”
J. Acoust. Soc. Am.
140
(
3
),
1618
1634
.
80.
Sayers
,
B. M.
, and
Cherry
,
E. C.
(
1957
). “
Mechanism of binaural fusion in the hearing of speech
,”
J. Acoust. Soc. Am.
29
(
9
),
973
987
.
81.
Shackleton
,
T. M.
,
Meddis
,
R.
, and
Hewitt
,
M. J.
(
1992
). “
Across frequency integration in a model of lateralization
,”
J. Acoust. Soc. Am.
91
(
4
),
2276
2279
.
82.
Shera
,
C. A.
,
Guinan
,
J. J.
, and
Oxenham
,
A. J.
(
2002
). “
Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements
,”
Proc. Natl. Acad. Sci.
99
(
5
),
3318
3323
.
83.
Smoski
,
W. J.
, and
Trahiotis
,
C.
(
1986
). “
Discrimination of interaural temporal disparities by normal-hearing listeners and listeners with high-frequency sensorineural hearing loss
,”
J. Acoust. Soc. Am.
79
(
5
),
1541
1547
.
84.
Spencer
,
N. J.
,
Hawley
,
M. L.
, and
Colburn
,
H. S.
(
2016
). “
Relating interaural difference sensitivities for several parameters measured in normal-hearing and hearing-impaired listeners
,”
J. Acoust. Soc. Am.
140
(
3
),
1783
1799
.
85.
Stecker
,
G. C.
, and
Gallun
,
F. J.
(
2012
). “
Binaural hearing, sound localization, and spatial hearing
,” in
Translational Perspectives in Auditory Neuroscience: Normal Aspects of Hearing
(
Plural
,
San Diego, CA
), Chap. 14, pp.
383
433
.
86.
Stern
,
R. M.
, and
Colburn
,
H. S.
(
1978
). “
Theory of binaural interaction based on auditory-nerve data. IV. A model for subjective lateral position
,”
J. Acoust. Soc. Am.
64
(
1
),
127
140
.
87.
Stern
,
R. M.
, and
Shear
,
G. D.
(
1996
). “
Lateralization and detection of low-frequency binaural stimuli: Effects of distribution of internal delay
,”
J. Acoust. Soc. Am.
100
(
4
),
2278
2288
.
88.
Stern
,
R. M.
, and
Trahiotis
,
C.
(
1992
). “
The role of consistency of interaural timing over frequency in binaural lateralization
,” in
Auditory Physiology and Perception
(
Elsevier
,
Amsterdam
), pp.
547
554
.
89.
Takanen
,
M.
,
Santala
,
O.
, and
Pulkki
,
V.
(
2014
). “
Visualization of functional count-comparison-based binaural auditory model output
,”
Hear. Res.
309
,
147
163
.
90.
van der Heijden
,
M.
,
Lorteije
,
J. A.
,
Plauška
,
A.
,
Roberts
,
M. T.
,
Golding
,
N. L.
, and
Borst
,
J. G. G.
(
2013
). “
Directional hearing by linear summation of binaural inputs at the medial superior olive
,”
Neuron
78
(
5
),
936
948
.
91.
Ventura
,
V.
(
2010
). “
Bootstrap tests of hypotheses
,” in
Analysis of Parallel Spike Trains
, edited by
S.
Grün
and
S.
Rotter
(
Springer
,
Berlin
), Vol. 7, Chap. 18, pp.
383
398
.
92.
Wang
,
D.
, and
Brown
,
G. J.
(
2005
). “
Binaural sound localization
,” in
Computational Auditory Scene Analysis
(
Wiley
,
New York
), Chap. 5, pp.
1
34
.
93.
Wang
,
L.
,
Devore
,
S.
,
Delgutte
,
B.
, and
Colburn
,
H. S.
(
2014
). “
Dual sensitivity of inferior colliculus neurons to ITD in the envelopes of high-frequency sounds: Experimental and modeling study
,”
J. Neurophysiol.
111
(
1
),
164
181
.
94.
Witten
,
I.
, and
Frank
,
E.
(
2011
).
Data Mining: Practical Machine Learning Tools and Techniques
, 3rd ed. (
Morgan Kaufmann
,
Burlington, MA
).
95.
Wright
,
A.
,
Davis
,
A.
,
Bredberg
,
G.
,
Ulehlova
,
L.
, and
Spencer
,
H.
(
1987
). “
Hair cell distributions in the normal human cochlea
,”
Acta Oto-laryngolog. Suppl.
444
,
1
48
.
96.
Yin
,
T. C.
,
Chan
,
J. C.
, and
Irvine
,
D. R.
(
1986
). “
Effects of interaural time delays of noise stimuli on low-frequency cells in the cat's inferior colliculus. I. Responses to wideband noise
,”
J. Neurophysiol.
55
(
2
),
280
300
.
97.
Zhang
,
X.
,
Heinz
,
M. G.
,
Bruce
,
I. C.
, and
Carney
,
L. H.
(
2001
). “
A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression
,”
J. Acoust. Soc. Am.
109
(
2
),
648
670
.
98.
Zilany
,
M. S.
, and
Bruce
,
I. C.
(
2006
). “
Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery
,”
J. Acoust. Soc. Am.
120
(
3
),
1446
1466
.
99.
Zilany
,
M. S.
,
Bruce
,
I. C.
, and
Carney
,
L. H.
(
2014
). “
Updated parameters and expanded simulation options for a model of the auditory periphery
,”
J. Acoust. Soc. Am.
135
(
1
),
283
286
.
100.
Zilany
,
M. S.
,
Bruce
,
I. C.
,
Nelson
,
P. C.
, and
Carney
,
L. H.
(
2009
). “
A phenomenological model of the synapse between the inner hair cell and auditory nerve: Long-term adaptation with power-law dynamics
,”
J. Acoust. Soc. Am.
126
(
5
),
2390
2412
.
101.
Zilany
,
M. S.
, and
Carney
,
L. H.
(
2010
). “
Power-law dynamics in an auditory-nerve model can account for neural adaptation to sound-level statistics
,”
J. Neurosci.
30
(
31
),
10380
10390
.
You do not currently have access to this content.