The scalar differential equation in the thickness eigendisplacement for the doubly-rotated quartz plates is applied to analyze thickness vibrations of an unelectroded circular plate with free edges at the neighborhood of the pure thickness vibration mode. The scalar differential equation is transformed into an elliptical coordinate system. With the boundary conditions of free edges, the frequencies and the modes are solved in terms of the Mathieu function and the Modified Mathieu function. The results of frequencies of the fundamental harmonic and its third overtone of an AT-cut quartz circular plate by the present approach agree well with the existing theoretical results and the experiment results. The frequencies and modes of an SC-cut quartz circular plate are investigated by the present approach. The frequencies are close to each other when the order of the harmonics is the same. A rotation angle of the symmetric axes of the vibration modes are observed that is dependent on the anisotropic material constants and the order of the harmonics. This approach has potential applications in the design of the doubly-rotated quartz circular resonators.

1.
Arfken
,
G.
,
Weber
,
H.
, and
Harris
,
F.
(
2012
).
Mathematical Methods for Physicists: A Comprehensive Guide
(
Academic Press
,
New York
), pp.
1
29
.
2.
Bechmann
,
R.
(
1958
). “
Elastic and piezoelectric constants of alpha-quartz
,”
Phys. Rev.
110
(
5
),
1060
1061
.
3.
Eernisse
,
E. P.
(
1975
). “
Quartz resonator frequency shifts arising from electrode stress
,” in
Proceedings of the 29th Annual Symposium on Frequency Control
, May 28–30, Fort Monmouth, NJ, pp.
1
4
.
4.
Eernisse
,
E. P.
(
1976
). “
Calculations on the stress compensated (sc-cut) quartz resonator
,” in
Proceedings 30th Annual Symposium on Frequency Control
, June 2–4, Fort Monmouth, NJ, pp.
8
11
.
5.
He
,
H.
,
Yang
,
J.
, and
Jiang
,
Q.
(
2013
). “
Thickness-shear and thickness-twist vibrations of circular AT-cut quartz resonators
,”
Acta Mech. Solid. Sin.
26
(
3
),
245
254
.
6.
Koga
,
I.
(
1932
). “
Thickness vibrations of piezoelectric oscillating crystals
,”
J. Appl. Phys.
3
(
2
),
70
80
.
7.
Lee
,
P.
, and
Nikodem
,
Z.
(
1972
). “
An approximate theory for high-frequency vibrations of elastic plates
,”
Int. J. Solids Struct.
8
(
5
),
581
612
.
8.
Liu
,
B.
,
Xing
,
Y.
,
Wang
,
W.
, and
Yu
,
W.
(
2015
). “
Thickness-shear vibration analysis of circular quartz crystal plates by a differential quadrature hierarchical finite element method
,”
Compos. Struct.
131
,
1073
1080
.
9.
McLachlan
,
N. W.
(
1947
).
Theory and Application of Mathieu Functions
(
Clarendon Press
,
London
), p.
401
.
10.
Mindlin
,
R. D.
(
1951a
). “
Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates
,”
J. Appl. Mech. Trans. ASME
18
,
31
38
.
11.
Mindlin
,
R. D.
(
1951b
). “
Thickness-shear and flexural vibrations of crystal plates
,”
J. Appl. Phys.
22
(
3
),
316
323
.
12.
Mindlin
,
R. D.
(
1961
). “
High frequency vibrations of crystal plates
,”
Q. Appl. Math.
19
(
1
),
51
61
.
13.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
(
1954
). “
Thickness-shear and flexural vibrations of a circular disk
,”
J. Appl. Phys.
25
(
10
),
1329
1332
.
14.
Shi
,
J.
,
Fan
,
C.
,
Zhao
,
M.
, and
Yang
,
J.
(
2014
). “
Variational formulation of the Stevens-Tiersten equation and application in the analysis of rectangular trapped-energy quartz resonators
,”
J. Acoust. Soc. Am.
135
(
1
),
175
181
.
15.
Shi
,
J.
,
Fan
,
C.
,
Zhao
,
M.
, and
Yang
,
J.
(
2015a
). “
Trapped thickness-shear modes in a contoured, partially electroded AT-cut quartz resonator
,”
Eur. Phys. J. Appl. Phys.
69
(
1
),
10302
.
16.
Shi
,
J.
,
Fan
,
C.
,
Zhao
,
M.
, and
Yang
,
J.
(
2015b
). “
Variational analysis of thickness-shear vibrations of a quartz piezoelectric plate with two pairs of electrodes as an acoustic wave filter
,”
Int. J. Appl. Electromagn. Mech.
47
(
4
),
951
961
.
17.
Shi
,
J.
,
Fan
,
C.
,
Zhao
,
M.
, and
Yang
,
J.
(
2016a
). “
Energy trapping of thickness-shear modes in inverted-mesa AT-cut quartz piezoelectric resonators
,”
Ferroelectrics
494
(
1
),
157
169
.
18.
Shi
,
J.
,
Fan
,
C.
,
Zhao
,
M.
, and
Yang
,
J.
(
2016b
). “
Thickness-shear vibration characteristics of an AT-cut quartz resonator with rectangular ring electrodes
,”
Int. J. Appl. Electromagn. Mech.
51
(
1
),
1
10
.
19.
Stevens
,
D. S.
, and
Tiersten
,
H. F.
(
1986
). “
An analysis of doubly rotated quartz resonators utilizing essentially thickness modes with transverse variation
,”
J. Acoust. Soc. Am.
79
(
6
),
1811
1826
.
20.
Tiersten
,
H. F.
(
1963
). “
Thickness vibrations of piezoelectric plates
,”
J. Acoust. Soc. Am.
35
(
1
),
53
58
.
21.
Tiersten
,
H. F.
(
1969
).
Linear Piezoelectric Plate Vibrations
(
Springer
,
Boston, MA
).
22.
Tiersten
,
H. F.
, and
Smythe
,
R. C.
(
1979
). “
An analysis of contoured crystal resonators operating in overtones of coupled thickness shear and thickness twist
,”
J. Acoust. Soc. Am.
65
(
6
),
1455
1460
.
23.
Tiersten
,
H. F.
, and
Smythe
,
R. C.
(
1985
). “
Coupled thickness-shear and thickness-twist vibrations of unelectroded AT-cut quartz plates
,”
J. Acoust. Soc. Am.
78
(
5
),
1684
1689
.
24.
Wang
,
B.
,
Dai
,
X.
,
Zhao
,
X.
, and
Qian
,
Z.
(
2017
). “
A semi-analytical solution for the thickness-vibration of centrally partially-electroded circular AT-cut quartz resonators
,”
Sensors
17
(
8
),
1820
.
25.
Wang
,
J.
,
Shi
,
J.
, and
Du
,
J.-K.
(
2009
). “
The finite element analysis of thickness-shear vibrations of quartz crystal plates with ANSYS
,” in
Proceedings of the 2009 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA 2009)
, December 17–20, Wuhan, China, pp.
124
124
.
26.
Wang
,
J.
, and
Yang
,
J.
(
2000
). “
Higher-order theories of piezoelectric plates and applications
,”
Appl. Mech. Rev.
53
(
4
),
87
89
.
27.
Wang
,
J.
, and
Zhao
,
W.
(
2005
). “
The determination of the optimal length of crystal blanks in quartz crystal resonators
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
(
11
),
2023
2030
.
28.
Yong
,
Y.-K.
,
Stewart
,
J.
,
Detaint
,
J.
,
Zarka
,
A.
,
Capelle
,
B.
, and
Zheng
,
Y.
(
1992
). “
Thickness-shear mode shapes and mass-frequency influence surface of a circular and electroded AT-cut quartz resonator
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
39
(
5
),
609
617
.
29.
Zhang
,
C. L.
,
Chen
,
W. Q.
, and
Yang
,
J. S.
(
2009
). “
Electrically forced vibration of a rectangular piezoelectric plate of monoclinic crystals
,”
Int. J. Appl. Electromagn. Mech.
31
(
4
),
207
218
.
30.
Zhao
,
Z.
,
Qian
,
Z.
, and
Wang
,
B.
(
2017
). “
Thickness-shear vibration of a Z-strip AT-cut quartz crystal plate with nonuniform electrode pairs
,”
Ferroelectrics
506
(
1
),
48
62
.
31.
Zhao
,
Z.
,
Qian
,
Z.
,
Wang
,
B.
, and
Yang
,
J.
(
2015a
). “
Analysis of thickness-shear and thickness-twist modes of AT-cut quartz acoustic wave resonator and filter
,”
Appl. Math. Mech.
36
(
12
),
1527
1538
.
32.
Zhao
,
Z.
,
Qian
,
Z.
,
Wang
,
B.
, and
Yang
,
J.
(
2015b
). “
Thickness-shear and thickness-twist modes in an AT-cut quartz acoustic wave filter
,”
Ultrasonics
58
,
1
5
.
You do not currently have access to this content.