Two methods for estimating audiograms quickly and accurately using Bayesian active learning were developed and evaluated. Both methods provided an estimate of threshold as a continuous function of frequency. For one method, six successive tones with decreasing levels were presented on each trial and the task was to count the number of tones heard. A Gaussian Process was used for classification and maximum-information sampling to determine the frequency and levels of the stimuli for the next trial. The other method was based on a published method using a Yes/No task but extended to account for lapses. The obtained audiograms were compared to conventional audiograms for 40 ears, 19 of which were hearing impaired. The threshold estimates for the active-learning methods were systematically from 2 to 4 dB below (better than) those for the conventional audiograms, which may indicate a less conservative response criterion (a greater willingness to respond for a given amount of sensory information). Both active-learning methods were able to allow for wrong button presses (due to lapses of attention) and provided accurate audiogram estimates in less than 50 trials or 4 min. For a given level of accuracy, the counting task was slightly quicker than the Yes/No task.

1.
ANSI
(
2004
). S3.21-2004 (R2009),
Methods for Manual Pure-Tone Threshold Audiometry
(
American National Standards Institute
,
New York)
.
2.
Békésy
,
G. V.
(
1947
). “
A new audiometer
,”
Acta Otolaryngol.
35
,
411
422
.
3.
Bisgaard
,
N.
,
Vlaming
,
M. S.
, and
Dahlquist
,
M.
(
2010
). “
Standard audiograms for the IEC 60118-15 measurement procedure
,”
Trends Amplif.
14
,
113
120
.
4.
British Society of Audiology
(
2011
).
Pure-Tone Air-Conduction and Bone-Conduction Threshold Audiometry With and Without Masking: Recommended Procedure
(
British Society of Audiology
,
Reading, UK
).
5.
Chu
,
W.
, and
Ghahramani
,
Z.
(
2005
). “
Gaussian processes for ordinal regression
,”
J. Mach. Learn. Res.
6
,
1019
1041
.
6.
Cox
,
M.
, and
de Vries
,
B.
(
2015
). “
A Bayesian binary classification approach to pure tone audiometry
,” arXiv:1511.08670.
7.
Elliott
,
E.
(
1958
). “
A ripple effect in the audiogram
,”
Nature
181
,
1076
.
8.
Fastl
,
H.
, and
Zwicker
,
E.
(
2007
).
Psychoacoustics. Facts and Models
(
Springer
,
Berlin, Germany)
.
9.
Gardner
,
J. R.
,
Song
,
X.
,
Weinberger
,
K. Q.
,
Barbour
,
D.
, and
Cunningham
,
J. P.
(
2015
). “
Psychophysical detection testing with bayesian active learning
,” in
Proceedings of the Thirty-First Conference Conference on Uncertainty in Artificial Intelligence
, July 12–16, Amsterdam, the Netherlands, pp.
286
295
.
10.
Green
,
D. M.
(
1995
). “
Maximum-likelihood procedures and the inattentive observer
,”
J. Acoust. Soc. Am.
97
,
3749
3760
.
11.
Houlsby
,
N. M. T.
,
Huszár
,
F.
,
Ghahramani
,
Z.
, and
Lengyel
,
M.
(
2011
). “
Bayesian active learning for classification and preference learning
,” arXiv:1112.5745.
12.
IEC
(
1998
). 60318-1:1998,
Electroacoustics—Simulators of Human Head and Ear—Part 1: Ear Simulator for the Calibration of Supra-Aural Earphones
(
International Electrotechnical Commission
,
Geneva, Switzerland
).
13.
ISO
(
2004
). 389-8:2004,
Acoustics—Reference Zero for the Calibration of Audiometric Equipment—Part 8: Reference Equivalent Threshold Sound Pressure Levels for Pure Tones and Circumaural Earphones
(
International Organization for Standardization
,
Geneva, Switzerland
).
14.
Jesteadt
,
W.
,
Luce
,
R. D.
, and
Green
,
D. M.
(
1977
). “
Sequential effects in judgments of loudness
,”
J. Exp. Psychol. Hum. Percept. Perform.
3
,
92
104
.
15.
Kelareva
,
E.
,
Mewing
,
J.
,
Turpin
,
A.
, and
Wirth
,
A.
(
2010
). “
Adaptive psychophysical procedures, loss functions, and entropy
,”
Atten. Percept. Psychophys.
72
,
2003
2012
.
16.
Kontsevich
,
L. L.
, and
Tyler
,
C. W.
(
1999
). “
Bayesian adaptive estimation of psychometric slope and threshold
,”
Vision Res.
39
,
2729
2737
.
17.
Leek
,
M. R.
,
Dubno
,
J. R.
,
He
,
N.-J.
, and
Ahlstrom
,
J. B.
(
2000
). “
Experience with a yes–no single-interval maximum-likelihood procedure
,”
J. Acoust. Soc. Am.
107
,
2674
2684
.
18.
Levene
,
H.
(
1961
). “
Robust tests for equality of variances
,” in
Contributions to Probability and Statistics. Essays in Honor of Harold Hotelling
(
Stanford University Press
,
Stanford, CA
), pp.
279
292
.
19.
Margolis
,
R. H.
,
Glasberg
,
B. R.
,
Creeke
,
S.
, and
Moore
,
B. C. J.
(
2010
). “
AMTAS®: Automated method for testing auditory sensitivity: Validation studies
,”
Int. J. Audiol.
49
,
185
194
.
20.
Mauermann
,
M.
,
Long
,
G. R.
, and
Kollmeier
,
B.
(
2004
). “
Fine structure of hearing threshold and loudness perception
,”
J. Acoust. Soc. Am.
116
,
1066
1080
.
21.
Moore
,
B. C. J.
(
2004
). “
Testing the concept of softness imperception: Loudness near threshold for hearing-impaired ears
,”
J. Acoust. Soc. Am.
115
,
3103
3111
.
22.
Rasmussen
,
C. E.
, and
Williams
,
C. K.
(
2006
).
Gaussian Processes for Machine Learning
(
MIT Press
,
Cambridge, MA)
, pp.
1
266
.
23.
Rinne
,
A.
(
1855
). “
Beiträge zur Physiologie des menschlichen Ohres (Contributions to the physiology of the human ear)
,”
Vierteljahrschrift für die praktische Heilkunde
12
,
71
123
.
24.
Schlittenlacher
,
J.
,
Turner
,
R. E.
, and
Moore
,
B. C. J.
(
2018
). “
A hearing-model-based active-learning test for the determination of dead regions
,”
Trends Hear.
22, in press.
25.
Shannon
,
C. E.
(
1948
). “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
379
423, 623–656
.
26.
Shen
,
Y.
, and
Richards
,
V. M.
(
2013
). “
Bayesian adaptive estimation of the auditory filter
,”
J. Acoust. Soc. Am.
134
,
1134
1145
.
27.
Song
,
X. D.
,
Wallace
,
B. M.
,
Gardner
,
J. R.
,
Ledbetter
,
N. M.
,
Weinberger
,
K. Q.
, and
Barbour
,
D. L.
(
2015
). “
Fast, continuous audiogram estimation using machine learning
,”
Ear Hear.
36
,
e326
e335
.
28.
Steinberg
,
J. C.
, and
Gardner
,
M. B.
(
1937
). “
The dependence of hearing impairment on sound intensity
,”
J. Acoust. Soc. Am.
9
,
11
23
.
29.
Wichmann
,
F. A.
, and
Hill
,
N. J.
(
2001
). “
The psychometric function: I. Fitting, sampling, and goodness of fit
,”
Percept. Psychophys.
63
,
1293
1313
.
You do not currently have access to this content.