The isolation and sorting of cells is an important process in research and hospital labs. Most large research and commercial labs incorporate fluorescently or magnetically labeled antibodies adherent to cell surface antigens for cell identification and separation. In this paper, a process is described that merges biochemical labeling with ultrasound-based separation. Instead of lasers and fluorophore tags, or magnets and magnetic particle tags, the technique uses ultrasound and microbubble tags. Streptavidin-labeled microbubbles were mixed with a human acute lymphoblastic leukemia cell line, CCL 119, conjugated with biotinylated anti-CD7 antibodies. Tagged cells were forced under ultrasound, and their displacement and velocity quantified. Differential displacement in a flow stream was quantified against erythrocytes, which showed almost no displacement under ultrasound. A model for the acoustic radiation force on the conjugated pairs compares favorably with observations. This technology may improve on current time-consuming and costly purification procedures.

1.
M. H.
Julius
,
T.
Masuda
, and
L. A.
Herzenberg
, “
Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter
,”
Proc. Natl. Acad. Sci. U.S.A.
69
,
1934
1938
(
1972
).
2.
S.
Miltenyi
,
W.
Muller
,
W.
Weichel
, and
A.
Radbruch
, “
High-gradient magnetic cell-separation with Macs
,”
Cytometry
11
,
231
238
(
1990
).
3.
P. J.
Amos
,
E.
Cagavi Bozkulak
, and
Y.
Qyang
, “
Methods of cell purification: A critical juncture for laboratory research and translational science
,”
Cells Tissues Organs
195
,
26
40
(
2012
).
4.
W. T.
Coakley
,
D. W.
Bardsley
,
M. A.
Grundy
,
F.
Zamani
, and
D. J.
Clarke
, “
Cell manipulation in ultrasonic standing wave fields
,”
J. Chem. Technol. Biot
44
,
43
62
(
1989
).
5.
W. T.
Coakley
, “
Ultrasonic separations in analytical biotechnology
,”
Trends Biotechnol.
15
,
506
511
(
1997
).
6.
J. J.
Hawkes
and
W. T.
Coakley
, “
Force field particle filter, combining ultrasound standing waves and laminar flow
,”
Sens. Actuators, B
75
,
213
222
(
2001
).
7.
F.
Petersson
,
A.
Nilsson
,
C.
Holm
,
H.
Jonsson
, and
T.
Laurell
, “
Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels
,”
Analyst
129
,
938
943
(
2004
).
8.
T.
Laurell
,
F.
Petersson
, and
A.
Nilsson
, “
Chip integrated strategies for acoustic separation and manipulation of cells and particles
,”
Chem. Soc. Rev.
36
,
492
506
(
2007
).
9.
M.
Antfolk
,
C.
Magnusson
,
P.
Augustsson
,
H.
Lija
, and
T.
Laurell
, “
Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells
,”
Anal. Chem.
87
,
9322
9328
(
2015
).
10.
G.
Goddard
and
G.
Kaduchak
, “
Ultrasonic particle concentration in a line-driven cylindrical tube
,”
J. Acoust. Soc. Am.
117
,
3440
3447
(
2005
).
11.
G.
Goddard
,
J. C.
Martin
,
S. W.
Graves
, and
G.
Kaduchak
, “
Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer
,”
Cytometry, Part A
69a
,
66
74
(
2006
).
12.
G.
Kaduchak
and
M. D.
Ward
, “
Application of acoustic radiation pressure to align cells in a commercial flow cytometer
,”
Proc. Mtgs. Acoust.
19
,
045014
(
2013
).
13.
L. V.
King
, “
On the acoustic radiation pressure on spheres
,”
Proc. R. Soc. London, Ser. A
147
,
212
240
(
1934
).
14.
T.
Segers
and
M.
Versluis
, “
Acoustic bubble sorting for ultrasound contrast agent enrichment
,”
Lab Chip
14
,
1705
1714
(
2014
).
15.
C. H.
Hsu
,
C. C.
Chen
,
D.
Irimia
, and
M.
Toner
, “
Isolating cells from blood using buoyancy activated cell sorting (BACS) with glass microbubbles
,” in
14th International Conference on Miniaturized Systems for Chemistry and Life Sciences
, edited by
S.
Verpoorte
(
Chemical and Biological Microsystems Society Groningen
,
The Netherlands
,
2010
).
16.
M. A.
Faridi
,
H.
Ramachandraiah
,
I.
Iranmanesh
,
D.
Grishenkov
,
M.
Wiklund
, and
A.
Russom
, “
MicroBubble activated acoustic cell sorting
,”
Biomed. Microdevices
19
,
23
30
(
2017
).
17.
L. P.
Gor'kov
, “
On the forces acting on a small particle in an acoustical field in an ideal fluid
,”
Sov. Phys. Dokl.
6
,
773
775
(
1962
).
18.
D.
Hartono
,
Y.
Liu
,
P. L.
Tan
,
X. Y. S.
Then
,
L. Y. L.
Yung
, and
K. M.
Lim
, “
On-chip measurements of cell compressibility via acoustic radiation
,”
Lab Chip
11
,
4072
4080
(
2011
).
19.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic
,
London
,
1994
).
20.
A.
Doinikov
, “
Bjerknes forces and translational bubble dynamics
,” in
Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications
, edited by
A.
Doinikov
(
Research Signpost
,
Kerala, India
,
2005
), pp.
1
49
.
21.
C. C.
Church
, “
The effects of an elastic solid-surface layer on the radial pulsations of gas-bubbles
,”
J. Acoust. Soc. Am.
97
,
1510
1521
(
1995
).
22.
L.
Hoff
,
P. C.
Sontum
, and
J. M.
Hovem
, “
Oscillations of polymeric microbubbles: Effect of the encapsulating shell
,”
J. Acoust. Soc. Am.
107
,
2272
2280
(
2000
).
23.
D.
Chatterjee
and
K.
Sarkar
, “
A Newtonian rheological model for the interface of microbubble contrast agents
,”
Ultrasound Med. Biol.
29
,
1749
1757
(
2003
).
24.
P.
Marmottant
,
S.
van der Meer
,
M.
Emmer
,
M.
Versluis
,
N.
de Jong
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
,”
J. Acoust. Soc. Am.
118
,
3499
3505
(
2005
).
25.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics, 2nd ed.: Volume 6 (Course of Theoretical Physics)
(
Pergamon Press
,
Oxford
,
1987
).
26.
A. J.
Reddy
and
A. J.
Szeri
, “
Coupled dynamics of translation and collapse of acoustically driven microbubbles
,”
J. Acoust. Soc, Am.
112
,
1346
1352
(
2002
).
27.
T. J.
Matula
, “
Bubble levitation and translation under single-bubble sonoluminescence conditions
,”
J. Acoust. Soc. Am.
114
,
775
781
(
2003
).
28.
Y. A.
Kobelev
and
L. A.
Ostrovskii
, “
Acoustic electrostatic analogy and the interaction of gas-bubbles in a liquid
,”
Sov. Phys. Acoust.
30
,
427
428
(
1984
).
29.
S. Y.
Emelianov
,
M. F.
Hamilton
,
Y. A.
Ilinskii
, and
E. A.
Zabolotskaya
, “
Nonlinear dynamics of a gas bubble in an incompressible elastic medium
,”
J. Acoust. Soc. Am.
115
,
581
588
(
2004
).
30.
N.
Guz
,
M.
Dokukin
,
V.
Kalaparthi
, and
I.
Sokolov
, “
If cell mechanics can be described by elastic modulus: Study of different models and probes used in indentation experiments
,”
Biophys. J.
107
,
564
575
(
2014
).
31.
Y. A.
Kobelev
and
L. A.
Ostrovsky
, “
Nonlinear acoustic phenomena due to bubble drift in a gas−liquid mixture
,”
J. Acoust. Soc. Am.
85
,
621
629
(
1989
).
32.
C.
Beguin
,
E.
Pelletier
, and
S.
Etienne
, “
Void fraction influence on added mass in a bubbly flow
,”
Eur. J. Mech. B-Fluid
56
,
28
45
(
2016
).
33.
L. A.
Crum
, “
Bjerknes forces on bubbles in a stationary sound field
,”
J. Acoust. Soc. Am.
57
,
1363
1370
(
1975
).
34.
S. M.
van der Meer
,
B.
Dollet
,
M. M.
Voormolen
,
C. T.
Chin
,
A.
Bouakaz
,
N.
de Jong
,
M.
Versluis
, and
D.
Lohse
, “
Microbubble spectroscopy of ultrasound contrast agents
,”
J. Acoust. Soc. Am.
121
,
648
656
(
2007
).
35.
H.
Lamb
,
Hydrodynamics
(
Dover
,
New York
,
1945
).
36.
J.
Rychak
(personal communication,
2017
).
37.
C. P.
Shillaber
,
Photomicrography in Theory and Practice
(
Wiley, Chapman & Hall
,
New York
,
1944
).
You do not currently have access to this content.