The purpose of this paper is to present a method for the ultrasonic characterization of air-saturated porous media, by solving the inverse problem using only the reflected waves from the first interface to infer the porosity, the tortuosity, and the viscous and thermal characteristic lengths. The solution of the inverse problem relies on the use of different reflected pressure signals obtained under multiple obliquely incident waves, in the time domain. In this paper, the authors propose to solve the inverse problem numerically with a first level Bayesian inference method, summarizing the authors' knowledge on the inferred parameters in the form of posterior probability densities, exploring these densities using a Markov-Chain Monte-Carlo approach. Despite their low sensitivity to the reflection coefficient, it is still possible to extract the knowledge of the viscous and thermal characteristic lengths, allowing the simultaneous determination of all the physical parameters involved in the expression of the reflection operator. To further constrain the problem and guide the inference, the knowledge of a particular incident angle is used at one's advantage in order to more precisely define the thermal length, by effectively yielding a statistical relationship between tortuosity and characteristic length ratio.

1.
J. A.
Vrugt
,
C. J. F.
ter Braak
,
M. P.
Clark
,
J. M.
Hyman
, and
B. A.
Robinson
, “
Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov Chain Monte Carlo simulation
,”
Water Resour. Res.
44
(
12
),
w00B09
, (
2008
).
2.
T.
Haire
and
C.
Langton
, “
Biot theory: A review of its application to ultrasound propagation through cancellous bone
,”
Bone
24
(
4
),
291
295
(
1999
).
3.
J.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
, 2nd ed. (
Wiley
,
New York
,
2009
).
4.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range
,”
J. Acoust. Soc. Am.
28
(
2
),
168
178
(
1956
).
5.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
(
2
),
179
191
(
1956
).
6.
M. A.
Biot
, “
Mechanics of deformation and acoustic propagation in porous media
,”
J. Appl. Acoust.
33
(
4
),
1482
1498
(
1962
).
7.
M. A.
Biot
, “
Generalized theory of acoustic propagation in porous dissipative media
,”
J. Acoust. Soc. Am.
34
(
9A
),
1254
1264
(
1962
).
8.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
9.
Y.
Champoux
and
J.-F.
Allard
, “
Dynamic tortuosity and bulk modulus in air-saturated porous media
,”
J. Appl. Acoust.
70
(
4
),
1975
1979
(
1991
).
10.
T. G.
Zieliński
, “
Normalized inverse characterization of sound absorbing rigid porous media
,”
J. Acoust. Soc. Am.
137
(
6
),
3232
3243
(
2015
).
11.
Y.
Atalla
and
R.
Panneton
, “
Inverse acoustical characterization of open cell porous media using impedance tube measurements
,”
Can. Acoust.
33
(
1
),
11
24
(
2005
).
12.
P.
Cobo
and
F.
Simón
, “
A comparison of impedance models for the inverse estimation of the non-acoustical parameters of granular absorbers
,”
J. Appl. Acoust.
104
,
119
126
(
2016
).
13.
T.
Hentati
,
L.
Bouazizi
,
M.
Taktak
,
H.
Trabelsi
, and
M.
Haddar
, “
Multi-levels inverse identification of physical parameters of porous materials
,”
J. Appl. Acoust.
108
,
26
30
(
2016
).
14.
J.
Vanhuyse
,
E.
Deckers
,
S.
Jonckheere
,
B.
Pluymers
, and
W.
Desmet
, “
Global optimisation methods for poroelastic material characterisation using a clamped sample in a kundt tube setup
,”
Mech. Syst. Signal Process.
68–69
,
462
478
(
2016
).
15.
Z. E. A.
Fellah
,
S.
Berger
,
W.
Lauriks
,
C.
Depollier
,
C.
Aristegui
, and
J.-Y.
Chapelon
, “
Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence
,”
J. Acoust. Soc. Am.
113
(
5
),
2424
2433
(
2003
).
16.
Z. E. A.
Fellah
,
S.
Berger
,
W.
Lauriks
,
C.
Depollier
,
P.
Trompette
, and
J.
Chapelon
, “
Ultrasonic measurement of the porosity and tortuosity of air-saturated random packings of beads
,”
J. Appl. Acoust.
93
(
11
),
9352
9359
(
2003
).
17.
Z. E. A.
Fellah
,
F. G.
Mitri
,
M.
Fellah
,
E.
Ogam
, and
C.
Depollier
, “
Ultrasonic characterization of porous absorbing materials: Inverse problem
,”
J. Sound. Vib.
302
(
4
),
746
759
(
2007
).
18.
J.-P.
Groby
,
E.
Ogam
,
L.
De Ryck
,
N.
Sebaa
, and
W.
Lauriks
, “
Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reflected coefficients
,”
J. Acoust. Soc. Am.
127
(
2
),
764
772
(
2010
).
19.
Z. E. A.
Fellah
,
M.
Sadouki
,
M.
Fellah
,
F.
Mitri
,
E.
Ogam
, and
C.
Dépollier
, “
Simultaneous determination of porosity, tortuosity, viscous and thermal characteristic lengths of rigid porous materials
,”
J. Appl. Phys.
114
(
20
),
204902
(
2013
).
20.
M.
Niskanen
,
J.-P.
Groby
,
A.
Duclos
,
O.
Dazel
,
J.
Le Roux
,
N.
Poulain
,
T.
Huttunen
, and
T.
Lähivaara
, “
Deterministic and statistical characterization of rigid frame porous materials from impedance tube measurements
,”
J. Acoust. Soc. Am.
142
(
4
),
2407
2418
(
2017
).
21.
J.-D.
Chazot
,
E.
Zhang
, and
J.
Antoni
, “
Acoustical and mechanical characterization of poroelastic materials using a Bayesian approach
,”
J. Acoust. Soc. Am.
131
(
6
),
4584
4595
(
2012
).
22.
C.
Zwikker
and
C. W.
Kosten
,
Sound Absorbing Materials
(
Elsevier
,
New York
,
1949
).
23.
Z.
Fellah
and
C.
Depollier
, “
Transient acoustic wave propagation in rigid porous media: A time-domain approach
,”
J. Acoust. Soc. Am.
107
(
2
),
683
688
(
2000
).
24.
S. G.
Samko
,
A. A.
Kilbas
, and
O. I.
Marichev
,
Fractional Integrals and Derivatives: Theory and Applications
(
Gordon and Breach
,
Yverdon, Switzerland
,
1993
), p.
44
.
25.
F.
Monteghetti
,
D.
Matignon
,
E.
Piot
, and
L.
Pascal
, “
Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models
,”
J. Acoust. Soc. Am.
140
(
3
),
1663
1674
(
2016
).
26.
B.
Gurevich
and
M.
Schoenberg
, “
Interface conditions for Biot's equations of poroelasticity
,”
J. Acoust. Soc. Am.
105
(
5
),
2585
2589
(
1999
).
27.
Z. E. A.
Fellah
,
M.
Fellah
,
W.
Lauriks
, and
C.
Depollier
, “
Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material
,”
J. Acoust. Soc. Am.
113
(
1
),
61
72
(
2003
).
28.
Z. E. A.
Fellah
,
F.
Mitri
,
C.
Depollier
,
S.
Berger
,
W.
Lauriks
, and
J.
Chapelon
, “
Characterization of porous materials with a rigid frame via reflected waves
,”
J. Appl. Phys.
94
(
12
),
7914
7922
(
2003
).
29.
R. C.
Smith
,
Uncertainty Quantification: Theory, Implementation, and Applications
(
SIAM
,
Philadelphia
,
2013
), Vol.
12
.
30.
A.
Tarantola
,
Inverse Problem Theory and Methods for Model Parameter Estimation
(
SIAM
,
Philadelphia
,
2005
).
31.
W. R.
Gilks
,
S.
Richardson
, and
D.
Spiegelhalter
,
Markov Chain Monte Carlo in Practice
(
CRC Press
,
Boca Raton
,
1995
).
32.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
(
6
),
1087
1092
(
1953
).
33.
W. K.
Hastings
, “
Monte Carlo sampling methods using Markov chains and their applications
,”
Biometrika
57
(
1
),
97
109
(
1970
).
34.
R.
Storn
and
K.
Price
, “
Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
,”
J. Global Optim.
11
(
4
),
341
359
(
1997
).
35.
C. J.
Ter Braak
, “
Genetic algorithms and Markov chain Monte Carlo: Differential evolution Markov chain makes Bayesian computing easy (revised)
,”
Tech. Rep.
, Wageningen, U. R. Biometris (
2005
).
36.
C. J.
Ter Braak
, “
A Markov chain Monte Carlo version of the genetic algorithm differential evolution: Easy Bayesian computing for real parameter spaces
,”
Stat. Comput.
16
(
3
),
239
249
(
2006
).
37.
E.
Laloy
and
J. A.
Vrugt
, “
High-dimensional posterior exploration of hydrologic models using multiple-try dream(zs) and high-performance computing
,”
Water Resour. Res.
48
(
1
),
w01526
, (
2012
).
38.
A.
Gelman
and
D. B.
Rubin
, “
Inference from iterative simulation using multiple sequences
,”
Stat. Sci.
7
(
4
),
457
472
(
1992
).
39.
Y.
Champoux
,
M. R.
Stinson
, and
G. A.
Daigle
, “
Air-based system for the measurement of porosity
,”
J. Acoust. Soc. Am.
89
(
2
),
910
916
(
1991
).
40.
N.
Brown
,
M.
Melon
,
V.
Montembault
,
B.
Castagnède
,
W.
Lauriks
, and
P.
Leclaire
, “
Evaluation of the viscous characteristic length of air-saturated porous materials from the ultrasonic dispersion curve
,”
C. R. Acad. Sci.
322
(
2
),
122
127
(
1996
).
41.
P.
Leclaire
,
L.
Kelders
,
W.
Lauriks
,
M.
Melon
,
N.
Brown
, and
B.
Castagnede
, “
Determination of the viscous and thermal characteristic lengths of plastic foams by ultrasonic measurements in helium and air
,”
J. Appl. Phys.
80
(
4
),
2009
2012
(
1996
).
42.
N.
Xiang
and
C.
Fackler
, “
Objective Bayesian analysis in acoustics
,”
Acoust. Today
11
(
2
),
54
61
(
2015
).
43.
S. R.
Pride
,
F. D.
Morgan
, and
A. F.
Gangi
, “
Drag forces of porous-medium acoustics
,”
Phys. Rev. B
47
(
9
),
4964
4978
(
1993
).
You do not currently have access to this content.