Using a same-different discrimination task, it has been shown that discrimination performance for sequences of complex tones varying just detectably in pitch is less dependent on sequence length (1, 2, or 4 elements) when the tones contain resolved harmonics than when they do not [Cousineau, Demany, and Pessnitzer (2009). J. Acoust. Soc. Am. 126, 3179–3187]. This effect had been attributed to the activation of automatic frequency-shift detectors (FSDs) by the shifts in resolved harmonics. The present study provides evidence against this hypothesis by showing that the sequence-processing advantage found for complex tones with resolved harmonics is not found for pure tones or other sounds supposed to activate FSDs (narrow bands of noise and wide-band noises eliciting pitch sensations due to interaural phase shifts). The present results also indicate that for pitch sequences, processing performance is largely unrelated to pitch salience per se: for a fixed level of discriminability between sequence elements, sequences of elements with salient pitches are not necessarily better processed than sequences of elements with less salient pitches. An ideal-observer model for the same-different binary-sequence discrimination task is also developed in the present study. The model allows the computation of d′ for this task using numerical methods.

1.
Bezanson
,
J.
,
Edelman
,
A.
,
Karpinski
,
S.
, and
Shah
,
V.
(
2017
). “
Julia: A fresh approach to numerical computing
,”
SIAM Rev.
59
,
65
98
.
2.
Bilsen
,
F. A.
(
1977
). “
Pitch of noise signals: Evidence for a ‘central spectrum,’ 
J. Acoust. Soc. Am.
61
,
150
161
.
3.
Carcagno
,
S.
,
Semal
,
C.
, and
Demany
,
L.
(
2011
). “
Frequency-shift detectors bind binaural as well as monaural frequency representations
,”
J. Exp. Psychol. Human Percept. Perform.
37
,
1976
1987
.
4.
Cousineau
,
M.
,
Carcagno
,
S.
,
Demany
,
L.
, and
Pressnitzer
,
D.
(
2014
). “
What is a melody? On the relationship between pitch and brightness of timbre
,”
Front. Systems Neurosci.
7
,
127
.
5.
Cousineau
,
M.
,
Demany
,
L.
,
Meyer
,
B.
, and
Pressnitzer
,
D.
(
2010a
). “
What breaks a melody: Perceiving F0 and intensity sequences with a cochlear implant
,”
Hear. Res.
269
,
34
41
.
6.
Cousineau
,
M.
,
Demany
,
L.
, and
Pressnitzer
,
D.
(
2009
). “
What makes a melody: The perceptual singularity of pitch sequences
,”
J. Acoust. Soc. Am.
126
,
3179
3187
.
7.
Cousineau
,
M.
,
Demany
,
L.
, and
Pressnitzer
,
D.
(
2010b
). “
The role of peripheral resolvability in pitch-sequence processing
,”
J. Acoust. Soc. Am.
128
,
EL236
EL241
.
8.
Dai
,
H.
,
Versfeld
,
N. J.
, and
Green
,
D. M.
(
1996
). “
The optimum decision rules in the same-different paradigm
,”
Percept. Psychophys.
58
,
1
9
.
9.
Demany
,
L.
,
Pressnitzer
,
D.
, and
Semal
,
C.
(
2009
). “
Tuning properties of the auditory frequency-shift detectors
,”
J. Acoust. Soc. Am.
126
,
1342
1348
.
10.
Demany
,
L.
, and
Ramos
,
C.
(
2005
). “
On the binding of successive sounds: Perceiving shifts in nonperceived pitches
,”
J. Acoust. Soc. Am.
117
,
833
841
.
11.
Demany
,
L.
, and
Semal
,
C.
(
2018
). “
Automatic frequency-shift detection in the auditory system: A review of psychophysical findings
,”
Neuroscience
, in press.
12.
Demany
,
L.
,
Semal
,
C.
,
Cazalets
,
J. R.
, and
Pressnitzer
,
D.
(
2010
). “
Fundamental differences in change detection between vision and audition
,”
Exp. Brain Res.
203
,
261
270
.
13.
Demany
,
L.
,
Semal
,
C.
, and
Pressnitzer
,
D.
(
2011
). “
Implicit versus explicit frequency comparisons: Two mechanisms of auditory change detection
,”
J. Exp. Psychol. Human Percept. Perform.
37
,
597
605
.
14.
Gockel
,
H.
,
Moore
,
B. C. J.
,
Carlyon
,
R. P.
, and
Plack
,
C. J.
(
2007
). “
Effect of duration on the frequency discrimination of individual partials in a complex tone and on the discrimination of fundamental frequency
,”
J. Acoust. Soc. Am.
121
,
373
382
.
15.
Hoekstra
A.
(
1979
). “
Frequency discrimination and frequency analysis in hearing
,” Ph.D. thesis,
Groningen
,
the Netherlands
.
16.
Houstma
,
A. J. M.
, and
Smurzynski
,
J.
(
1990
). “
Pitch identification and discrimination for complex tones with many harmonics
,”
J. Acoust. Soc. Am.
87
,
304
310
.
17.
Hsieh
,
I.
, and
Saberi
,
K.
(
2007
). “
Temporal integration in absolute identification of musical pitch
,”
Hear. Res.
233
,
108
116
.
18.
Jesteadt
,
W.
(
1980
). “
An adaptive procedure for subjective judgments
,”
Percept. Psychophys.
28
,
85
88
.
19.
Macmillan
,
N. A.
, and
Creelman
,
C. D.
(
2004
).
Detection Theory: A User's Guide
, 2nd ed. (
Lawrence Erlbraum Associates
,
London
).
20.
Macmillan
,
N. A.
,
Kaplan
,
H. L.
, and
Creelman
,
C. D.
(
1977
). “
The psychophysics of categorical perception
,”
Psychol. Rev.
84
,
452
471
.
21.
McFarland
,
D. J.
, and
Cacace
,
A. T.
(
1992
). “
Aspects of short-term acoustic recognition memory: Modality and serial position effects
,”
Audiology
31
,
342
352
.
22.
Moore
,
B. C. J.
(
1973
). “
Frequency difference limens for short-duration tones
,”
J. Acoust. Soc. Am.
54
,
610
619
.
23.
Moore
,
B. C. J.
,
Glasberg
,
B. R.
, and
Shailer
,
M. J.
(
1984
). “
Frequency and intensity difference limens for harmonics within complex tones
,”
J. Acoust. Soc. Am.
75
,
550
561
.
24.
Moore
,
B. C. J.
, and
Gockel
,
H. E.
(
2011
). “
Resolvability of components in complex tones and implications for theories of pitch perception
,”
Hear. Res.
276
,
88
97
.
25.
Moore
,
B. C. J.
,
Kenyon
,
O.
,
Glasberg
,
B. R.
, and
Demany
,
L.
(
2013
). “
Assessing the possible role of frequency-shift detectors in the ability to hear out partials in complex tones
,” in
Basic Aspects of Hearing: Physiology and Perception
, edited by
B. C. J.
Moore
,
R. D.
Patterson
,
I.
Winter
,
R. P.
Carlyon
, and
H. E.
Gockel
(
Springer
,
New York
), pp.
127
135
.
26.
Noreen
,
D. L.
(
1981
). “
Optimal decision rules for some common psychophysical paradigms
,” in
Mathematical Psychology and Psychophysiology. Proceedings of the Symposium in Applied Mathematics of the American Mathematical Society and the Society for Industrial and Applied Mathematics
, edited by
S.
Grossberg
(
American Mathematical Society
,
Providence, RI
), Vol.
13
, pp.
237
279
.
27.
Patterson
,
R. D.
,
Peters
,
R. W.
, and
Milroy
,
R.
(
1983
). “
Threshold duration for melodic pitch
,” in
Hearing—Physiological Bases and Psychophysics
, edited by
R.
Klinke
and
R.
Hartmann
(
Springer-Verlag
,
Berlin
), pp.
321
326
.
28.
Plack
,
C. J.
, and
Carlyon
,
R. P.
(
1995
). “
Differences in frequency modulation detection and fundamental frequency discrimination between complex tones consisting of resolved and unresolved harmonics
,”
J. Acoust. Soc. Am.
98
,
1355
1364
.
29.
Plack
,
C. J.
, and
Oxenham
,
A. J.
(
2005
). “
The psychophysics of pitch
,” in
Pitch: Neural Coding and Perception
, edited by
C. J.
Plack
,
A. J.
Oxenham
,
R. R.
Fay
, and
A. N.
Popper
(
Springer
,
New York
), pp.
7
55
.
30.
White
,
L. J.
, and
Plack
,
C. J.
(
2003
). “
Factors affecting the duration effect in pitch perception for unresolved complex tones
,”
J. Acoust. Soc. Am.
114
,
3309
3316
.
31.
Yin
,
P.
,
Mishkin
,
M.
,
Sutter
,
M.
, and
Fritz
,
J. B.
(
2008
). “
Early stages of melody processing: Stimulus-sequence and task-dependent neuronal activity in monkey auditory cortical fields A1 and R
,”
J. Neurophysiol.
100
,
3009
3029
.

Supplementary Material

You do not currently have access to this content.