Ultrasonic backscatter techniques are being developed to detect changes in cancellous bone caused by osteoporosis. One technique, called the backscatter difference technique, measures the power difference between two portions of a backscatter signal. The goal of the present study is to investigate how bone mineral density (BMD) and the microstructure of human cancellous bone influence four backscatter difference parameters: the normalized mean of the backscatter difference (nMBD) spectrum, the normalized slope of the backscatter difference spectrum, the normalized intercept of the backscatter difference spectrum, and the normalized backscatter amplitude ratio (nBAR). Ultrasonic measurements were performed with a 3.5 MHz broadband transducer on 54 specimens of human cancellous bone from the proximal femur. Volumetric BMD and the microstructural characteristics of the specimens were measured using x-ray micro-computed tomography. Of the four ultrasonic parameters studied, nMBD and nBAR demonstrated the strongest univariate correlations with density and microstructure. Multivariate analyses indicated that nMBD and nBAR depended on trabecular separation and possibly other microstructural characteristics of the specimens independently of BMD. These findings suggest that nMBD and nBAR may be sensitive to changes in the density and microstructure of bone caused by osteoporosis.

1.
A.
Oden
,
E. V.
McCloskey
,
J. A.
Kanis
,
N. C.
Harvey
, and
H.
Johansson
, “
Burden of high fracture probability worldwide: Secular increases 2010–2040
,”
Osteoporos. Int.
26
,
2243
2248
(
2015
).
2.
T.
Hildebrand
,
A.
Laib
,
R.
Muller
,
J.
Dequeker
, and
P.
Ruegsegger
, “
Direct three-dimensional morphometric analysis of human cancellous bone: Microstructural data from spine, femur, iliac crest, and calcaneus
,”
J. Bone Miner. Res.
14
,
1167
1174
(
1999
).
3.
A. M.
Parfitt
, “
Trabecular bone architecture in the pathogenesis and prevention of fracture
,”
Am. J. Med.
82
,
68
72
(
1987
).
4.
M.
Hochberg
, “
Preventing fractures in postmenopausal women with osteoporosis. A review of recent controlled trials of antiresorptive agents
,”
Drugs Aging
17
,
317
330
(
2000
).
5.
E.
Siris
, “
Alendronate in the treatment of osteoporosis: A review of the clinical trials
,”
J. Womens Health Gend. Based Med.
9
,
599
606
(
2000
).
6.
S.
Chaffai
,
F.
Peyrin
,
S.
Nuzzo
,
R.
Porcher
,
G.
Berger
, and
P.
Laugier
, “
Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: Relationships to density and microstructure
,”
Bone
30
,
229
237
(
2002
).
7.
M. A.
Hakulinen
,
J. S.
Day
,
J.
Toyras
,
H.
Weinans
, and
J. S.
Jurvelin
, “
Ultrasonic characterization of human trabecular bone microstructure
,”
Phys. Med. Biol.
51
,
1633
1648
(
2006
).
8.
F.
Padilla
,
F.
Jenson
,
V.
Bousson
,
F.
Peyrin
, and
P.
Laugier
, “
Relationships of trabecular bone structure with quantitative ultrasound parameters: In vitro study on human proximal femur using transmission and backscatter measurements
,”
Bone
42
,
1193
1202
(
2008
).
9.
K. A.
Wear
,
S.
Nagaraja
,
M. L.
Dreher
, and
S. L.
Gibson
, “
Relationships of quantitative ultrasound parameters with cancellous bone microstructure in human calcaneus in vitro
,”
J. Acoust. Soc. Am.
131
,
1605
1612
(
2012
).
10.
C. C.
Gluer
,
C. Y.
Wu
, and
H. K.
Genant
, “
Broadband ultrasound attenuation signals depend on trabecular orientation: An in vitro study
,”
Osteoporos. Int.
3
,
185
191
(
1993
).
11.
C. C.
Gluer
,
C. Y.
Wu
,
M.
Jergas
,
S. A.
Goldstein
, and
H. K.
Genant
, “
Three quantitative ultrasound parameters reflect bone structure
,”
Calcif. Tissue Int.
55
,
46
52
(
1994
).
12.
P. H.
Nicholson
,
M. J.
Haddaway
, and
M. W.
Davie
, “
The dependence of ultrasonic properties on orientation in human vertebral bone
,”
Phys. Med. Biol.
39
,
1013
1024
(
1994
).
13.
A.
Hosokawa
and
T.
Otani
, “
Acoustic anisotropy in bovine cancellous bone
,”
J. Acoust. Soc. Am.
103
,
2718
2722
(
1998
).
14.
B. K.
Hoffmeister
,
S. A.
Whitten
, and
J. Y.
Rho
, “
Low-megahertz ultrasonic properties of bovine cancellous bone
,”
Bone
26
,
635
642
(
2000
).
15.
B. K.
Hoffmeister
,
S. A.
Whitten
,
S. C.
Kaste
, and
J. Y.
Rho
, “
Effect of collagen and mineral content on the high-frequency ultrasonic properties of human cancellous bone
,”
Osteoporos. Int.
13
,
26
32
(
2002
).
16.
K. A.
Wear
and
A.
Laib
, “
The dependence of ultrasonic backscatter on trabecular thickness in human calcaneus: Theoretical and experimental results
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
979
986
(
2003
).
17.
F.
Padilla
,
F.
Jenson
, and
P.
Laugier
, “
Estimation of trabecular thickness using ultrasonic backcatter
,”
Ultrason. Imaging
28
,
3
22
(
2006
).
18.
D. D.
Deligianni
and
K. N.
Apostolopoulos
, “
Characterization of dense bovine cancellous bone tissue microstructure by ultrasonic backscattering using weak scattering models
,”
J. Acoust. Soc. Am.
122
,
1180
1190
(
2007
).
19.
O.
Riekkinen
,
M. A.
Hakulinen
,
M. J.
Lammi
,
J. S.
Jurvelin
,
A.
Kallioniemi
, and
J.
Toyras
, “
Acoustic properties of trabecular bone–relationships to tissue composition
,”
Ultrasound Med. Biol.
33
,
1438
1444
(
2007
).
20.
K. N.
Apostolopoulos
and
D. D.
Deligianni
, “
Influence of microarchitecture alterations on ultrasonic backscattering in an experimental simulation of bovine cancellous bone aging
,”
J. Acoust. Soc. Am.
123
,
1179
1187
(
2008
).
21.
J. P.
Karjalainen
,
J.
Toyras
,
O.
Riekkinen
,
M.
Hakulinen
, and
J. S.
Jurvelin
, “
Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone
,”
Ultrasound Med. Biol.
35
,
1376
1384
(
2009
).
22.
M. K.
Malo
,
J.
Toyras
,
J. P.
Karjalainen
,
H.
Isaksson
,
O.
Riekkinen
, and
J. S.
Jurvelin
, “
Ultrasound backscatter measurements of intact human proximal femurs—Relationships of ultrasound parameters with tissue structure and mineral density
,”
Bone
64
,
240
245
(
2014
).
23.
M.
Peccarisi
,
T.
De Marco
,
F.
Conversano
,
P.
Pisani
,
L.
Spedicato
,
A.
Greco
,
D.
Panetta
,
G.
Guido
,
V.
Bottai
,
P. A.
Salvadori
, and
S.
Casciaro
, “
In-vitro study of human proximal femur microstructure: Analysis of the relationship between micro-computed tomography data and quantitative ultrasound parameters
,”
IET Sci., Meas. Technol.
10
,
193
199
(
2016
).
24.
B. L.
Riggs
and
L. J.
Melton
 III
, “
The worldwide problem of osteoporosis: Insights afforded by epidemiology
,”
Bone
17
,
505S
511S
(
1995
).
25.
B. K.
Hoffmeister
,
A. R.
Wilson
,
M. J.
Gilbert
, and
M. E.
Sellers
, “
A backscatter difference technique for ultrasonic bone assessment
,”
J. Acoust. Soc. Am.
132
,
4069
4076
(
2012
).
26.
B. K.
Hoffmeister
,
M. R.
Smathers
,
C. J.
Miller
,
J. A.
McPherson
,
C. R.
Thurston
,
P. L.
Spinolo
, and
S. R.
Lee
, “
Backscatter-difference measurements of cancellous bone using an ultrasonic imaging system
,”
Ultrason. Imaging
38
,
285
297
(
2016
).
27.
B. K.
Hoffmeister
,
A. M.
Viano
,
L. C.
Fairbanks
,
S. C.
Ebron
,
J. A.
McPherson
, and
M. T.
Huber
, “
Effect of gate choice on backscatter difference measurements of cancellous bone
,”
J. Acoust. Soc. Am.
142
,
540
550
(
2017
).
28.
B. K.
Hoffmeister
,
P. L.
Spinolo
,
M. E.
Sellers
,
P. L.
Marshall
,
A. M.
Viano
, and
S. R.
Lee
, “
Effect of intervening tissues on ultrasonic backscatter measurements of bone: An in vitro study
,”
J. Acoust. Soc. Am.
138
,
2449
2457
(
2015
).
29.
B. A.
Christiansen
, “
Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice
,”
Bone Rep.
5
,
136
140
(
2016
).
30.
M. A.
Hakulinen
,
J. S.
Day
,
J.
Toyras
,
M.
Timonen
,
H.
Kroger
,
H.
Weinans
,
I.
Kiviranta
, and
J. S.
Jurvelin
, “
Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2–6.7 MHz frequency range
,”
Phys. Med. Biol.
50
,
1629
1642
(
2005
).
31.
O.
Riekkinen
,
M. A.
Hakulinen
,
M.
Timonen
,
J.
Toyras
, and
J. S.
Jurvelin
, “
Influence of overlying soft tissues on trabecular bone acoustic measurement at various ultrasound frequencies
,”
Ultrasound Med. Biol.
32
,
1073
1083
(
2006
).
32.
Y. Q.
Jiang
,
C. C.
Liu
,
R. Y.
Li
,
W. P.
Wang
,
H.
Ding
,
Q.
Qi
,
D.
Ta
,
J.
Dong
, and
W. Q.
Wang
, “
Analysis of apparent integrated backscatter coefficient and backscattered spectral centroid shift in calcaneus in vivo for the ultrasonic evaluation of osteoporosis
,”
Ultrasound Med. Biol.
40
,
1307
1317
(
2014
).
33.
C.
Liu
,
T.
Tang
,
F.
Xu
,
D.
Ta
,
M.
Matsukawa
,
B.
Hu
, and
W.
Wang
, “
Signal of interest selection standard for ultrasonic backscatter in cancellous bone evaluation
,”
Ultrasound Med. Biol.
41
,
2714
2721
(
2015
).
34.
T.
Tang
,
C.
Liu
,
F.
Xu
, and
D.
Ta
, “
Correlation between the combination of apparent integrated backscatter-spectral centroid shift and bone mineral density
,”
J. Med. Ultrason. (2001)
43
,
167
173
(
2016
).
35.
P.
Ammann
and
R.
Rizzoli
, “
Bone strength and its determinants
,”
Osteoporos. Int.
14
,
Suppl 3
,
S13
S18
(
2003
).
36.
B. K.
Hoffmeister
, “
Frequency dependence of apparent ultrasonic backscatter from human cancellous bone
,”
Phys. Med. Biol.
56
,
667
683
(
2011
).
37.
J. P.
Karjalainen
,
O.
Riekkinen
,
J.
Toyras
,
M.
Hakulinen
,
H.
Kroger
,
T.
Rikkonen
,
K.
Salovaara
, and
J. S.
Jurvelin
, “
Multi-site bone ultrasound measurements in elderly women with and without previous hip fractures
,”
Osteoporos. Int.
23
,
1287
1295
(
2012
).
38.
P. H.
Nicholson
,
R.
Muller
,
G.
Lowet
,
X. G.
Cheng
,
T.
Hildebrand
,
P.
Ruegsegger
,
G.
van der Perre
,
J.
Dequeker
, and
S.
Boonen
, “
Do quantitative ultrasound measurements reflect structure independently of density in human vertebral cancellous bone?
,”
Bone
23
,
425
431
(
1998
).
You do not currently have access to this content.