Passive localization of acoustic sources is treated within a geometric framework where non-Euclidean distance measures are computed between a cross-spectral density estimate of received data on a vertical array and a set of stochastic replica steering matrices, rather than traditional replica steering vectors. A processing scheme involving matrix-matrix comparisons where steering matrices, as functions of the replica source coordinates, naturally incorporate environmental variability or uncertainty provides a general framework for considering the acoustic inverse source problem in an ocean waveguide. Within this context a subset of matched-field processors is examined, based on recent advances in the application of non-Euclidean geometry to statistical classification of data feature clusters. The matrices are interpreted abstractly as points in a Riemannian manifold, and an appropriately defined distance measure between pairs of matrices on this manifold defines a matched-field processor for estimating source location. Acoustic simulations are performed for a waveguide comprising both a depth-dependent sound-speed profile perturbed by linear internal gravity waves and a depth-correlated surface noise field, providing an example of the viability of this approach to passive source localization in the presence of sound-speed variability.

1.
E. J.
Sullivan
and
D.
Middleton
, “
Estimation and detection issues in matched-field processing
,”
IEEE J. Ocean. Eng.
18
(
3
),
156
167
(
1993
).
2.
A. B.
Baggeroer
,
W. A.
Kuperman
, and
P. N.
Mikhalevsky
, “
An overview of matched field methods in ocean acoustics
,”
IEEE J. Ocean. Eng.
18
(
4
),
401
424
(
1993
).
3.
R.
Bhatia
,
Positive Definite Matrices
(
Princeton University Press
,
Princeton, NJ
,
2007
), Chap. 6.
4.
M.
Moakher
, “
A differential geometric approach to the geometric mean of symmetric positive definite matrices
,”
SIAM J. Matrix Anal. Appl.
26
(
3
),
735
747
(
2005
).
5.
C.
Debever
and
W. A.
Kuperman
, “
Robust matched-field processing using a coherent broadband white noise constraint processor
,”
J. Acoust. Soc. Am.
122
(
4
),
1979
1986
(
2007
).
6.
V.
Singh
,
K. E.
Knisely
,
S. H.
Yonak
,
K.
Grosh
, and
D. R.
Dowling
, “
Non-line-of-sight sound localization using matched-field processing
,”
J. Acoust. Soc. Am.
131
(
1
),
292
302
(
2012
).
7.
W.
Mantzel
,
J.
Romberg
, and
K.
Sabra
, “
Compressive matched-field processing
,”
J. Acoust. Soc. Am.
132
(
1
),
90
102
(
2012
).
8.
T.
Chen
,
C.
Liu
, and
Y. V.
Zakharov
, “
Source localization using matched-phase matched-field processing with phase descent search
,”
IEEE J. Ocean. Eng.
37
(
2
),
261
270
(
2012
).
9.
T. C.
Yang
, “
Data-based matched-mode source localization for a moving source
,”
J. Acoust. Soc. Am.
135
(
3
),
1218
1230
(
2014
).
10.
Y. Le
Gall
,
F.
Socheleau
, and
J.
Bonnel
, “
Matched-field processing performance under the stochastic and deterministic signal models
,”
IEEE Trans. Signal Proc.
62
(
22
),
5825
5838
(
2014
).
11.
W.
Xu
,
A. B.
Baggeroer
, and
H.
Schmidt
, “
Performance analysis for matched-field source localization: Simulations and experimental results
,”
IEEE J. Ocean. Eng.
31
(
2
),
325
344
(
2006
).
12.
Y. Le
Gall
,
S. E.
Dosso
,
F.
Socheleau
, and
J.
Bonnel
, “
Bayesian localization with uncertain Green's function in an uncertain shallow water ocean
,”
J. Acoust. Soc. Am.
139
(
3
),
993
1004
(
2016
).
13.
K. L.
Gemba
,
W. S.
Hodgkiss
, and
P.
Gerstoft
, “
Adaptive and compressive matched field processing
,”
J. Acoust. Soc. Am.
141
(
1
),
92
103
(
2017
).
14.
D.
Tollefsen
and
S. E.
Dosso
, “
Source localization with multiple hydrophone arrays via matched-field processing
,”
IEEE J. Ocean. Eng.
42
(
3
),
654
662
(
2017
).
15.
K. L.
Gemba
,
S.
Nannuru
,
P.
Gerstoft
, and
W. S.
Hodgkiss
, “
Multi-frequency sparse Bayesian learning for robust matched field processing
,”
J. Acoust. Soc. Am.
141
(
5
),
3411
3420
(
2017
).
16.
B. M.
Worthmann
,
H. C.
Song
, and
D. R.
Dowling
, “
Adaptive frequency-difference matched field processing for high frequency source localization in a noisy shallow ocean
,”
J. Acoust. Soc. Am.
141
,
543
556
(
2017
).
17.
E.
Westwood
, “
Broadband matched-field source localization
,”
J. Acoust. Soc. Am.
91
(
5
),
2777
2789
(
1992
).
18.
S. P.
Czenszak
and
J. L.
Krolik
, “
Robust wideband matched-field processing with a short vertical array
,”
J. Acoust. Soc. Am.
101
(
2
),
749
759
(
1997
).
19.
N. R.
Chapman
,
R. M.
Dizaji
, and
R. L.
Kirlin
, “
Matched field processing—A blind system identification technique
,” in
Advanced Signal Processing Handbook
, edited by
S.
Stergiopoulis
(
CRC Press
,
Boca Raton, FL
,
2001
).
20.
A. B.
Baggeroer
and
P. M.
Daly
, “
Stochastic matched field array processing for detection and nulling in uncertain ocean environments
,” in
34th Asilomar Conference on Signals, Systems and Computers
(IEEE, Pacific Grove, CA,
2000
), pp.
662
667
.
21.
S.
Finette
, “
Some speculations on source localization in uncertain ocean environments
,”
J. Acoust. Soc. Am.
121
,
3190
(
2007
).
22.
Y.
Zhou
,
W.
Xu
,
H.
Zhao
, and
N. R.
Chapman
, “
Improving statistical robustness of matched-field source localization via general-rank covariance matrix matching
,”
IEEE J. Ocean. Eng.
41
(
2
),
395
407
(
2016
).
23.
Y.
Li
,
K.
Wong
, and
H. de
Bruin
, “
Electroencephalogram signals classification for sleep-state decision—A Riemannian geometry approach
,”
IET Sign. Process.
6
(
4
),
288
299
(
2012
).
24.
Y.
Li
and
K. M.
Wong
, “
Riemannian distances for signal classification by power spectral density
,”
IEEE J. Select. Topics Sign. Process.
7
(
4
),
655
669
(
2013
).
25.
S.
Finette
, “
A stochastic representation of environmental uncertainty and its coupling to acoustic propagation in ocean waveguides
,”
J. Acoust. Soc. Am.
120
,
2567
2579
(
2006
).
26.
S.
Kotz
and
S.
Nadarajah
,
Multivariate t Distributions and their Applications
(
Cambridge University Press
,
Cambridge, UK
,
2004
).
27.
J.
Jost
,
Riemannian Geometry and Geometric Analysis
(
Springer-Verlag
,
Berlin
,
2005
).
28.
F.
Barbaresco
, “
Interactions between symmetric cone and information geometries: Bruhat–Tits and Siegel spaces models for high resolution autoregressive Doppler imagery
,” in
Emerging Trends in Visual Computing
, edited by
F.
Nielsen
(
Springer-Verlag
,
Berlin
,
2009
), pp.
124
163
.
29.
S.-I.
Amari
,
Differential Geometrical Methods in Statistics
(
Springer-Verlag
,
Berlin
,
1985
).
30.
S.
Kullback
,
Information Theory and Statistics
(
Dover
,
Mineola, NY
,
1968
).
31.
M.
Moakher
and
M.
Zerai
, “
The Riemannian geometry of the space of positive-definite matrices and its application to the regularization of positive-definite matrix-valued data
,”
J. Math. Imag. Vis.
40
,
171
187
(
2011
).
32.
D. C.
Dowson
and
B. V.
Landau
, “
The Frechet distance between multivariate normal distributions
,”
J. Multivariate Anal.
12
,
450
455
(
1982
).
33.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
American Institute of Physics Press
,
Woodbury, NY
,
1994
), pp.
564
566
, Chap. 10.3.1.
34.
Ocean Acoustics Library
, http://oalib.hlsresearch.com (Last viewed June 12,
2018
).
35.
T. C.
Yang
and
K.
Yoo
, “
Internal wave spectrum in shallow water: Measurement and comparison with the Garrett–Munk model
,”
IEEE J. Ocean. Eng.
24
(
3
),
333
345
(
1999
).
36.
C.
Garrett
and
W.
Munk
, “
Internal waves in the ocean
,”
Annu. Rev. Fluid Mech.
11
,
339
369
(
1979
).
37.
W. A.
Kuperman
and
F.
Ingenito
, “
Spatial correlation of surface generated noise in a stratified ocean
,”
J. Acoust. Soc. Am.
67
(
6
),
1988
1996
(
1980
).
38.
D.
Maiwald
and
D.
Kraus
, “
Calculation of moments of complex Wishart and complex inverse Wishart distributed matrices
,”
IEE Proc. Radar, Sonar Navig.
147
(
4
),
162
168
(
2000
).
39.
B.
Kulis
, “
Metric learning: A survey
,”
Found. Trends Mach. Learn.
5
(
4
),
287
364
(
2012
).
40.
K.
Carter
,
R.
Raich
,
W. G.
Finn
, and
A. O.
Hero
 III
, “
FINE: Fisher information nonparametric embedding
,”
IEEE Trans. Pattern Anal. Mach. Intell.
31
(
11
),
2093
2098
(
2009
).
41.
Y.
Cheng
,
X.
Wang
,
M.
Morelande
, and
B.
Moran
, “
Information geometry of target tracking sensor networks
,”
Inf. Fusion
14
,
311
326
(
2013
).
42.
X.
Hua
,
Y.
Cheng
,
H.
Wang
,
Y.
Qin
,
Y.
Li
, and
W.
Zhang
, “
Matrix CFAR detectors based on symmetrized Kullback-Leibler and total Kullback-Leibler divergences
,”
Dig. Sign. Process.
69
,
106
116
(
2017
).
You do not currently have access to this content.