Over the last century, hearing research has repeatedly reported differences in loudness perception when different types of transducers are being used. One of the effects of using different transducers is that listening may be performed via an open ear (loudspeaker), a cushioned ear (headphones), or an occluded ear (hearing aid receivers, insert earphones). The question of whether varying the acoustic load applied to the ear canal might impact hearing sensitivity has therefore become essential given the need to establish realistic noise damage risk criteria in an attempt to prevent noise-induced hearing loss for any given listening condition. Although such loudness discrepancies in the cushioned ear have been recently proven to be caused by loudness measurement artifacts, currently available data do not exclude a possible impact of ear canal occlusion on loudness perception. This paper presents the results of a loudness balance test carried out on 18 normal-hearing listeners. Using an earplug to occlude the canal, in-ear sound pressure levels were compared between the occluded ear and the cushioned ear at equal loudness. The results show agreement within 1 dB between the two listening conditions, and support the conclusion that loudness does not depend on the type of acoustic load applied to the ear canal.

1.
ANSI
(
2007
). S12.68-2007:
Methods of Estimating Effective A-Weighted Sound Pressure Levels When Hearing Protectors Are Worn
(
American National Standards Institute
,
New York
).
2.
Ballachanda
,
B. B.
, ed. (
2013
).
The Human Ear Canal
, 2nd ed. (
Plural Publishing Inc.
,
San Diego, CA
).
3.
Beranek
,
L. L.
(
1949
).
Acoustic Measurements
(
Wiley
,
New York
), pp.
730
731
.
4.
Berger
,
E. H.
, and
Kerivan
,
J. E.
(
1983
). “
Influence of physiological noise and the occlusion effect on the measurement of realear attenuation at threshold
,”
J. Acoust. Soc. Am.
74
(
1
),
81
94
.
5.
Bessette
,
R.
, and
Michael
,
K.
(
2012
). “
Measure and intervene: An in-ear dosimetry method that can change an OSHA violation—and internal attitudes
,”
Hear. Rev.
19
(
4
),
46
51
.
6.
Bonnet
,
F.
,
Voix
,
J.
, and
Nélisse
,
H.
(
2015
). “
The opportunities and challenges of in-ear noise dosimetry
,”
Can. Acoust.
43
(
3
),
80
81
.
7.
Bonnet
,
F.
,
Voix
,
J.
, and
Nélisse
,
H.
(
2016
). “
Effect of ear canal occlusion on loudness perception
,”
Can. Acoust.
44
(
3
),
154
155
.
8.
Botte
,
M. C.
, and
Mönikheim
,
S.
(
1994
). “
New data on the short-term effects of tone exposure
,”
J. Acoust. Soc. Am.
95
(
5
),
2598
2605
.
9.
Chan
,
J. C. K.
, and
Geisler
,
C. D.
(
1990
). “
Estimation of eardrum acoustic pressure and of ear canal length from remote points in the canal
,”
J. Acoust. Soc. Am.
87
(
3
),
1237
1247
.
10.
Charbonneau
,
J.
(
2017
). “
Development of an improved time varying loudness model with the inclusion of binaural loudness summation
,” electronic theses and dissertations, available at https://scholar.uwindsor.ca/etd/5971/ (Last viewed June 5, 2018).
11.
Dean
,
M. S.
, and
Martin
,
F. N.
(
2000
). “
Insert earphone depth and the occlusion effect
,”
Am. J. Audiol.
9
(
2
),
131
134
.
12.
École de Technologie Supérieure
(
2018
).
“Méthode de mesure de l'exposition sonore effective intra-auriculaire sous un protecteur auditif de type ‘bouchon’ ”
(“Measurement method of the effective intra-auricular sound exposure under a cap-type hearing protector”), U.S. patent 62/669,177.
13.
Epstein
,
M.
, and
Florentine
,
M.
(
2009
). “
Binaural loudness summation for speech and tones presented via earphones and loudspeakers
,”
Ear. Hear.
30
(
2
),
234
237
.
14.
Fletcher
,
H.
, and
Munson
,
W. A.
(
1933
). “
Loudness, its definition, measurement and calculation
,”
J. Acoust. Soc. Am.
5
(
2
),
82
108
.
15.
Florentine
,
M.
,
Popper
,
A. N.
, and
Fay
,
R. R.
, eds. (
2011
). “
Loudness
,” in
Springer Handbook of Auditory Research
(
Springer
,
New York
), Vol. 37, available at http://link.springer.com/10.1007/978-1-4419-6712-1 (Last viewed June 5, 2018).
16.
Gallagher
,
H. L.
,
McKinley
,
R. L.
,
Theis
,
M. A.
, and
Bjorn
,
V. S.
(
2014
). “
Calibration of an in-ear dosimeter for a single hearing protection device
,” Technical Report, Air Force Research Lab, Wright-Patterson AFB, OH.
17.
Gilman
,
S.
, and
Dirks
,
D. D.
(
1986
). “
Acoustics of ear canal measurement of eardrum SPL in simulators
,”
J. Acoust. Soc. Am.
80
(
3
),
783
793
.
18.
Hartmann
,
W. M.
,
Rakerd
,
B.
, and
Koller
,
A.
(
2005
). “
Binaural coherence in rooms
,”
Acta Acust. Acust.
91
,
451
462
, available at https://web.pa.msu.edu/acoustics/koller.pdf.
19.
ISO
(
2013
). 1999:2013, “
Acoustics—Estimation of noise-induced hearing loss
” (International Organization for Standardization, Geneva, Switzerland).
20.
Kasbach
,
J.
,
Marschall
,
M.
,
Epp
,
B.
, and
Dau
,
T.
(
2013
). “
The relation between perceived apparent source width and interaural cross-correlation in sound reproduction spaces with low reverberation
,” in
Proc. of DAGA 2013
, 18–21 March 2013, Merano, Italy.
21.
Keidser
,
G.
,
Katsch
,
R.
,
Dillon
,
H.
, and
Grant
,
F.
(
2000
). “
Relative loudness perception of low and high frequency sounds in the open and occluded ear
,”
J. Acoust. Soc. Am.
107
(
6
),
3351
3357
.
22.
Killion
,
M. C.
(
1978
). “
Revised estimate of minimum audible pressure: Where is the ‘missing 6 dB’?
,”
J. Acoust. Soc. Am.
63
(
5
),
1501
1508
.
23.
Lee
,
K.
(
2011
). “
Effects of earplug material, insertion depth, and measurement technique on hearing occlusion effect
,” available at https://vtechworks.lib.vt.edu/handle/10919/27021 (Last viewed June 5, 2018).
24.
Mapes-Riordan
,
D.
(
1991
). “
Horn modeling with conical and cylindrical transmission line elements
,” in Audio Engineering Society Convention 91, Audio Engineering Society, available at http://www.aes.org/e-lib/browse.cfm?elib=5522 (Last viewed June 5, 2018).
25.
Martin
,
F. N.
, and
Champlin
,
C. A.
(
2000
). “
Reconsidering the limits of normal hearing
,”
J. Am. Acad. Audiol.
11
(
2
),
64
66
, available at https://www.audiology.org/sites/default/files/journal/JAAA_11_02_02.pdf.
26.
Mazur
,
K.
, and
Voix
,
J.
(
2013
). “
A case-study on the continuous use of an in-ear dosimetric device
,”
J. Acoust. Soc. Am.
133
(
5
),
3274
.
27.
Muchnik
,
C.
,
Sahartov
,
E.
,
Peleg
,
E.
, and
Hildesheimer
,
M.
(
1992
). “
Temporary threshold shift due to noise exposure in guinea pigs under emotional stress
,”
Hear. Res.
58
(
1
),
101
106
.
28.
Munson
,
W. A.
, and
Wiener
,
F. M.
(
1952
). “
In search of the missing 6 dB
,”
J. Acoust. Soc. Am.
24
(
5
),
498
501
.
29.
Potard
,
G.
, and
Burnett
,
I.
(
2004
). “
Decorrelation techniques for the rendering of apparent sound source width in 3d audio displays
,” in
Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx'04)
, October 5–8, Naples, Italy.
30.
Robinson
,
D. W.
, and
Dadson
,
R. S.
(
1956
). “
A re-determination of the equal-loudness relations for pure tones
,”
Br. J. Appl. Phys.
7
(
5
),
166
181
.
31.
Rudmose
,
W.
(
1982
). “
The case of the missing 6 dB
,”
J. Acoust. Soc. Am.
71
(
3
),
650
659
.
32.
Schatz
,
R.
,
Egger
,
S.
, and
Masuch
,
K.
(
2012
). “
The impact of test duration on user fatigue and reliability of subjective quality ratings
,”
J. Audio Eng. Soc.
60
(
1/2
),
63
73
.
33.
Shaw
,
E. A. G.
, and
Stinson
,
M. R.
(
1983
).
“The human external and middle ear: Models and concepts,”
in
Mechanics of Hearing
, edited by
E. d.
Boer
and
M. A.
Viergever
(
Springer
,
Netherlands
), pp.
3
10
, available at http://link.springer.com/chapter/10.1007/978-94-009-6911-7_1 (Last viewed June 5, 2018).
34.
Sivian
,
L. J.
, and
White
,
S. D.
(
1933
). “
On minimum audible sound fields
,”
J. Acoust. Soc. Am.
4
(
4
),
288
321
.
35.
Stinson
,
M. R.
, and
Lawton
,
B. W.
(
1989
). “
Specification of the geometry of the human ear canal for the prediction of sound pressure level distribution
,”
J. Acoust. Soc. Am.
85
(
6
),
2492
2503
.
36.
Theis
,
M. A.
,
Gallagher
,
H. L.
,
McKinley
,
R. L.
, and
Bjorn
,
V. S.
(
2012
).
“Hearing protection with integrated in-ear dosimetry: A noise dose study,”
in
Proc. of the Internoise 2012/ASME NCAD Meeting
, August 19–22, New York.
37.
Thompson
,
P. S.
,
Dengerink
,
H. A.
, and
George
,
J. M.
(
1987
). “
Noise-induced temporary threshold shifts: The effects of anticipatory stress and coping strategies
,”
J. Human Stress
13
(
1
),
32
38
.
38.
Voix
,
J.
,
Smith
,
Pegeen
, and
Berger
,
E.
(
2018
). “
Field fit-testing and attenuation measurement procedures
,” in
The Noise Manual
, 6th ed. (
American Industrial Hygiene Association
,
Falls Church, VA
).
39.
Völk
,
F.
, and
Fastl
,
H.
(
2011
). “
Locating the missing 6 dB by loudness calibration of binaural synthesis
,” Audio Engineering Society, available at http://www.aes.org/e-lib/online/browse.cfm?elib=16014&rndx=722682 (Last viewed June 5, 2018).
40.
Wilber
,
L. A.
,
Kruger
,
B.
, and
Killion
,
M. C.
(
1988
). “
Reference thresholds for the ER3a insert earphone
,”
J. Acoust. Soc. Am.
83
(
2
),
669
676
.
41.
Winkler
,
A.
,
Latzel
,
M.
, and
Holube
,
I.
(
2016
). “
Open versus closed hearing-aid fittings: A literature review of both fitting approaches
,”
Trends Hear.
20
,
1
13
.
42.
Yost
,
W. A.
(
1981
). “
Lateral position of sinusoids presented with interaural intensive and temporal differences
,”
J. Acoust. Soc. Am.
70
(
2
),
397
409
.
43.
Zahorik
,
P.
, and
Wightman
,
F. L.
(
2001
). “
Loudness constancy with varying sound source distance
,”
Nat. Neurosci.
4
(
1
),
78
83
.
You do not currently have access to this content.