The Waveguide Invariant (WI) theory has been introduced to quantify the orientation of the intensity interference patterns in a range-frequency domain. When the sound speed is constant over the water column, the WI is a scalar with the canonical value of 1. But, when considering shallow waters with a stratified sound speed profile, the WI ceases to be constant and is more appropriately described by a distribution, which is mainly sensitive to source/receiver depths. Such configurations have been widely investigated, with practical applications including passive source localization. However, in deep waters, the interference pattern is much more complex and variable. In fact the observed WI varies with source/receiver depth but it also varies very quickly with source-array range. In this paper, the authors investigate two phenomena responsible for this variability, namely the dominance of the acoustic field by groups of modes and the frequency dependence of the eigenmodes. Using a ray-mode approach, these two features are integrated in a WI distribution derivation. Their importance in deep-water is validated by testing the calculated WI distribution against a reference distribution directly measured on synthetic data. The proposed WI derivation provides a thorough way to predict and understand the striation patterns in deep-water context.

1.
X.
Lurton
,
An Introduction to Underwater Acoustics: Principles and Applications
(
Springer Science & Business Media
,
Berlin
,
2002
).
2.
D. E.
Weston
and
K. J.
Stevens
, “
Interference of wide band sound in shallow water
,”
J. Sound. Vib.
21
(
1
),
57
64
(
1972
).
3.
S. D.
Chuprov
, “
Interference structure of a sound field in a layered ocean
,” in
Ocean Acoustics Current State
(Nauka,
1982
), pp.
71
91
.
4.
K. L.
Cockrell
, “
Understanding and utilizing waveguide invariant range frequency striations in ocean acoustic waveguides
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge,
2011
.
5.
G. A.
Grachev
, “
Theory of acoustic field invariants in layered waveguides
,”
Acoust. Phys.
39
(
1
),
67
71
(
1993
).
6.
C. H.
Harrison
, “
The relation between the waveguide invariant
,
multipath impulse response
,
and ray cycles
,”
J. Acoust. Soc. Am.
129
(
5
),
2863
2877
(
2011
).
7.
L.
Brekhovskikh
and
Y.
Lysanov
,
Fundamentals of Ocean Acoustics
(
Springer Science & Business Media
,
Berlin
,
2013
).
8.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
Springer Science & Business Media
,
Berlin
,
2011
).
9.
A. M.
Thode
, “
Source ranging with minimal environmental information using a virtual receiver and waveguide invariant theory
,”
J. Acoust. Soc. Am.
108
(
4
),
1582
1594
(
2000
).
10.
K. L.
Cockrell
and
H.
Schmidt
, “
Robust passive range estimation using the waveguide invariant
,”
J. Acoust. Soc. Am.
127
(
5
),
2780
2789
(
2010
).
11.
K. D.
Heaney
, “
Rapid geoacoustic characterization using a surface ship of opportunity
,”
IEEE J. Ocean. Eng.
29
(
1
),
88
99
(
2004
).
12.
J. E.
Quijano
,
L. M.
Zurk
, and
D.
Rouseff
, “
Demonstration of the invariance principle for active sonar
,”
J. Acoust. Soc. Am.
123
(
3
),
1329
1337
(
2008
).
13.
L. M.
Zurk
and
D.
Rouseff
, “
Striation-based beamforming for active sonar with a horizontal line array
,”
J. Acoust. Soc. Am.
132
(
4
),
EL264
EL270
(
2012
).
14.
Y.
Le Gall
and
J.
Bonnel
, “
Separation of moving ship striation patterns using physics-based filtering
,”
Traitement du Signal
30
(
3–5
),
149
168
(
2013
) [in French].
15.
D.
Zhi Gao
,
N.
Wang
, and
H.
Zhong Wang
, “
A dedispersion transform for sound propagation in shallow water waveguide
,”
J. Comput. Acoust.
18
(
03
),
245
257
(
2010
).
16.
J.
Bonnel
,
G.
Le Touze
,
B.
Nicolas
, and
J. I.
Mars
, “
Physics-based time-frequency representations for underwater acoustics: Power class utilization with waveguide invariant approximation
,”
IEEE Signal Process. Mag.
30
(
6
),
120
129
(
2013
).
17.
A. B.
Baggeroer
, “
Estimation of the distribution of the interference invariant with seismic streamers
,”
AIP Conf. Proc.
621
,
151
170
(
2002
).
18.
D.
Rouseff
and
R. C.
Spindel
, “
Modeling the waveguide invariant as a distribution
,”
AIP Conf. Proc.
621
,
137
150
(
2002
).
19.
T. C.
Yang
, “
Beam intensity striations and applications
,”
J. Acoust. Soc. Am.
113
(
3
),
1342
1352
(
2003
).
20.
A.
Turgut
and
L. T.
Fialkowski
, “
Depth discrimination using waveguide invariance
,”
J. Acoust. Soc. Am.
132
(
3
),
2054
2054
(
2012
).
21.
Julien
Bonnel
, “
Analysis of low frequency (0–150 Hz) modal dispersion for oceanic environment characterization
,” Ph.D. thesis,
Institut National Polytechnique de Grenoble - INPG
(
2010
) [in French].
22.
C.
Cho
,
H.-C.
Song
, and
A.
Thode
, “
Extension of the array invariant to deep-water environments
,”
J. Acoust. Soc. Am.
141
(
5
),
4049
4049
(
2017
).
23.
R.
Emmetiere
,
J.
Bonnel
,
M.
Gehant Pernot
, and
T.
Chonavel
, “
Source depth discrimination using the array invariant
,”
J. Acoust. Soc. Am.
141
(
5
),
3989
3989
(
2017
).
24.
L.
Ian-Qian
,
L.
Zheng-Lin
, and
Z.
Ren-He
, “
Applications of waveguide invariant theory to the analysis of interference phenomena in deep water
,”
Chinese Phys. Lett.
28
(
3
),
034303
(
2011
).
25.
M. B.
Porter
, “
The kraken normal mode program
,”
Technical report
, Naval Research Lab, Washington DC,
1992
.
26.
Y.
Le Gall
and
J.
Bonnel
, “
Separation of moving ship striation patterns using physics-based filtering
,”
Proc. Meet. Acoust.
19
(
1
),
070073
(
2013
).
27.
J.
Du
,
Y.
Zheng
,
Z.
Wang
,
H.
Cui
, and
Z.
Liu
, “
Passive acoustic source depth discrimination with two hydrophones in shallow water
,” in
OCEANS 2016
, Shanghai (April
2016
), pp.
1
6
.
28.
K. M.
Guthrie
and
C. T.
Tindle
, “
Ray effects in the normal mode approach to underwater acoustics
,”
J. Sound Vib.
47
(
3
),
403
413
(
1976
).
29.
C. T.
Tindle
and
K. M.
Guthrie
, “
Rays as interfering modes in underwater acoustics
,”
J. Sound Vib.
34
(
2
),
291
295
(
1974
).
30.
F. R.
DiNapoli
and
R. L.
Deavenport
, “
Numerical models of underwater acoustic propagation
,” in
Ocean Acoustics
(
Springer
,
New York
,
1979
), pp.
79
157
.
31.
K. M.
Guthrie
, “
The connection between normal modes and rays in underwater acoustics
,”
J. Sound Vib.
32
(
2
),
289
293
(
1974
).
32.
C. L.
Bartberger
, “
The computation of complex normal mode eigenvalues in underwater acoustic propagation
,” in
Computational Acoustics: Algorithms and Applications
, edited by
D.
Lee
,
R.
Sternberg
, and
M.
Schultz
(
Elsevier Science Publishers
,
North-Holland
,
1988
), pp.
149
159
.
33.
C.
Clay
and
H.
Medwin
,
Acoustical Oceanography: Principles and Applications
(
Wiley
,
New York
,
1977
).
34.
P.
Pignot
, “
Spatio-temporal characterization of the underwater acoustic propagation: Group and phase velocities reconstruction
,”
Traitement Signal
14
(
3
),
255
274
(
1997
).
35.
M. D.
Collins
, “
User's guide for ram versions 1.0 and 1.0 p
,” Naval Research Lab, Washington, DC (
1995
).
You do not currently have access to this content.