Time delay spectrometry (TDS) is extended for broadband characterization of plastics (low-density polyethylene, LDPE) and tissue-mimicking material (TMM). The results suggest that TDS and the conventional broadband pulse method give comparable measurements for frequency-dependent attenuation coefficient and phase velocity near the center frequency, where signal-to-noise ratio is high. However, TDS measurements show enhanced bandwidth for attenuation coefficient of 30%−40% (LDPE) and 89%−100% (TMM) and for phase velocity of 43% (LDPE) and 36% (TMM) for a single transmitter/receiver pair. In addition, TDS provides measurements of dispersion that are consistent with predictions based on the Kramers−Kronig relations to within 5 m/s over the band from 2 to 12 MHz in LDPE and to within 1 m/s in TMM over the band from 0.5 to 29 MHz.

1.
Canney
,
M. S.
,
Bailey
,
M. R.
,
Crum
,
L. A.
,
Khokhlova
,
V. A.
, and
Sapozhnikov
,
O. A.
(
2008
). “
Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach
,”
J. Acoust. Soc. Am.
124
,
2406
2420
(2008).
2.
Costa-Felix
,
R.
, and
Machado
,
J. C.
(
2015
). “
Output bandwidth enhancement of a pulsed ultrasound system using a flat envelope and compensated frequency-modulated input signal: Theory and experimental applications
,”
Measurement
69
,
146
154
.
3.
Duck
,
F.
(
1990
).
Physical Properties of Tissue: A Complete Reference Book
(
Academic
,
London, UK
), pp.
98
100
.
4.
Foster
,
F. S.
,
Pavlin
,
C. J.
,
Harasiewicz
,
K. A.
,
Christopher
,
D. A.
, and
Turnbull
,
D. H.
(
2000
). “
Advances in ultrasound biomicroscopy
,”
Ultrasound Med. Biol.
26
,
1
27
.
5.
Gammell
,
P. M.
,
Maruvada
,
S.
, and
Harris
,
G. R.
(
2007
). “
An ultrasonic time-delay spectrometry system employing digital processing
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
54
,
1036
1044
.
6.
Gammell
,
P. M.
,
Maruvada
,
S.
,
Liu
,
Y.
, and
Harris
,
G. R.
(
2010
). “
A pre-emphasis technique to broaden the usable frequency range in swept-frequency systems
,”
AIP Conf. Proc.
1211
,
670
676
.
7.
Harris
,
G. R.
, and
Gammell
,
P. M.
(
2004
). “
1-3 piezoelectric composite transducers for swept-frequency calibration of hydrophones from 100 kHz to 2 MHz
,”
J. Acoust. Soc. Am.
115
,
2914
2918
.
8.
Harris
,
G. R.
,
Gammell
,
P. M.
,
Lewin
,
P. A.
, and
Radulescu
,
E. G.
(
2004a
). “
Interlaboratory evaluation of hydrophone sensitivity calibration from 0.1 to 2 MHz via time delay spectrometry
,”
Ultrasonics
42
,
349
353
.
9.
Harris
,
G. R.
,
Maruvada
,
S.
, and
Gammell
,
P. M.
(
2004b
). “
Two efficient methods for measuring hydrophone frequency response in the 100 kHz to 2 MHz range
,”
J. Phys.: Conf. Ser.
1
,
26
31
.
10.
He
,
P.
(
2000
). “
Measurement of acoustic dispersion using both transmitted and reflected pulses
,”
J. Acoust. Soc. Am.
107
,
801
807
.
11.
Heyser
,
R. C.
(
1967
). “
Acoustical measurements by time delay spectrometry
,”
J. Audio Eng. Soc.
15
,
370
382
.
12.
International Commission on Radiation Units and Measurements (ICRU)
(
1998
). “
Tissue substitutes, phantoms and computational modeling in medical ultrasound
,” Bethesda, MD, Report 61.
13.
Kenwright
,
D. A.
,
Sadhoo
,
N.
,
Rajagopal
,
S.
,
Anderson
,
T.
,
Moran
,
C. M.
,
Hadoke
,
P. W.
,
Gray
,
G. A.
,
Zequiri
,
B.
, and
Hoskins
,
P. R.
(
2014
). “
Acoustic assessment of a konjac−carrageenan tissue-mimicking material at 5−60 MHz
,”
Ultrasound Med. Biol.
40
,
2895
2902
.
14.
King
,
R. L.
,
Liu
,
Y.
,
Maruvada
,
S.
,
Herman
,
B. A.
,
Wear
,
K. A.
, and
Harris
,
G. R.
(
2011
). “
Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
58
,
1397
1405
.
15.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
(
1982
).
Fundamentals of Acoustics
, 3rd ed. (
Wiley
,
New York)
, Chap. 6.
16.
Kreider
,
W.
,
Yuldashev
,
P. V.
,
Sapozhnikov
,
O. A.
,
Farr
,
N.
,
Partanen
,
A.
,
Bailey
,
M. R.
, and
Khokhlova
,
V. A.
(
2013
). “
Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
60
,
1683
1698
.
17.
Kuc
,
R.
, and
Schwartz
,
M.
(
1979
). “
Estimating the acoustic attenuation coefficient slope for liver from reflected ultrasound signals
,”
IEEE Trans. Son. Ultrason.
26
,
353
361
.
18.
Madsen
,
E. L.
,
Dong
,
F.
,
Frank
,
G.
,
Garra
,
B. S.
,
Wear
,
K. A.
,
Wilson
,
T.
,
Zagzebski
,
J. A.
,
Miller
,
H. L.
,
Shung
,
K. K.
,
Wang
,
S. H.
,
Feleppa
,
E. J.
,
Liu
,
T.
,
O'Brien
,
W. D.
,
Topp
,
K. A.
,
Sanghvi
,
N. T.
,
Zaitsev
,
A. V.
,
Hall
,
T. J.
,
Fowlkes
,
J. B.
,
Kripfgans
,
O. D.
, and
Miller
,
J. G.
(
1999
). “
Interlaboratory comparison of ultrasonic backscatter, attenuation, and speed measurements
,”
J. Ultrasound Med.
18
,
615
631
.
19.
Maruvada
,
S.
,
Liu
,
Y.
,
Soneson
,
J. E.
,
Herman
,
B. A.
, and
Harris
,
G. R.
(
2015
). “
Comparison between experimental and computational methods for the acoustic and thermal characterization of therapeutic ultrasound fields
,”
J. Acoust. Soc. Am.
137
,
1704
1713
.
20.
Montiel
,
A. R.
,
Browne
,
J. E.
,
Pye
,
S. D.
,
Anderson
,
T. A.
, and
Moran
,
C. M.
(
2017
). “
Broadband acoustic measurement of an agar-based tissue-mimicking-material: A longitudinal study
,”
Ultrasound Med. Biol.
43
,
1494
1505
.
21.
O'Donnell
,
M.
,
Jaynes
,
E. T.
, and
Miller
,
J. G.
(
1981
). “
Kramers−Kronig relationship between ultrasonic attenuation and phase velocity
,”
J. Acoust. Soc. Am.
69
,
696
701
.
22.
Rajagopal
,
S.
,
Sadhoo
,
N.
, and
Zeqiri
,
B.
(
2014
). “
Reference characterisation of sound speed and attenuation of the IEC agar-based tissue-mimicking material up to a frequency of 60 MHz
,”
Ultrasound Med. Biol.
41
,
317
333
.
23.
Soneson
,
J.
(
2009
). “
A user-friendly software package for HIFU simulation
,”
AIP Conf. Proc.
1113
,
165
169
.
24.
Waters
,
K. R.
,
Mobley
,
J.
, and
Miller
,
J. G.
(
2005
). “
Causality-imposed (Kramers−Kronig) relationships between attenuation and dispersion
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
52
,
822
833
.
25.
Wear
,
K. A.
(
2000
). “
The effects of frequency-dependent attenuation and dispersion on sound speed measurements: Applications in human trabecular bone
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
47
,
265
273
.
26.
Wear
,
K. A.
(
2010
). “
Cancellous bone analysis with modified least squares Prony's method and chirp filter: Phantom experiments and simulation
,”
J. Acoust. Soc. Am.
128
,
2191
2203
.
27.
Wear
,
K. A.
,
Gammell
,
P. M.
,
Maruvda
,
S.
,
Liu
,
Y.
, and
Harris
,
G. R.
(
2011
). “
Time-delay-spectrometry measurement of magnitude and phase of hydrophone response
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
58
,
2325
2333
.
28.
Wear
,
K. A.
,
Gammell
,
P. M.
,
Maruvada
,
S.
,
Liu
,
Y.
, and
Harris
,
G. R.
(
2014
). “
Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
61
,
62
75
.
29.
Wear
,
K. A.
,
Gammell
,
P. M.
,
Maruvada
,
S.
,
Liu
,
Y.
, and
Harris
,
G. R.
(
2015
). “
Correction for frequency-dependent hydrophone response to nonlinear pressure waves using complex deconvolution and rarefactional filtering: Application with fiber optic hydrophones
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
62
,
152
164
.
30.
Zellouf
,
D.
,
Jayet
,
Y.
,
Saint-Pierre
,
N.
,
Tatibouet
,
J.
, and
Baboux
,
J. C.
(
1996
). “
Ultrasonic spectroscopy in polymeric materials. Application of the Kramers−Kronig relations
,”
J. Appl. Phys.
80
,
2728
2732
.
You do not currently have access to this content.