In many applications, it is desirable to achieve a signal that is as close as possible to ideal white noise. One example is in the design of an artificial reverberator, whereby there is a need for its lossless prototype output from an impulse input to be perceptually white as much as possible. The Ljung-Box test, the Drouiche test, and the Wiener Entropy—also called the Spectral Flatness Measure—are three well-known methods for quantifying the similarity of a given signal to ideal white noise. In this paper, listening tests are conducted to measure the Just Noticeable Difference (JND) on the perception of white noise, which is the JND between ideal Gaussian white noise and noise with a specified deviation from the flat spectrum. This paper reports the JND values using one of these measures of whiteness, which is the Ljung-Box test. This paper finds considerable disagreement between the Ljung-Box test and the other two methods and shows that none of the methods is a significantly better predictor of listeners' perception of whiteness. This suggests a need for a whiteness test that is more closely correlated to human perception.

1.
A.
Harma
and
U. K.
Laine
, “
A comparison of warped and conventional linear predictive coding
,”
IEEE Trans. Speech Audio Process.
9
(
5
),
579
588
(
2001
).
2.
J. D.
Johnston
, “
Transform coding of audio signals using perceptual noise criteria
,”
IEEE J. Selected Areas Commun.
6
(
2
),
314
323
(
1988
).
3.
J. M.
Jot
and
A.
Chaigne
, “
Digital delay networks for designing artificial reverberators
,” in
Proceedings of the 90th Convention of the Audio Engineering Society
, Paris, France (February 19–22,
1991
).
4.
J. O.
Smith
,
Physical Audio Signal Processing for Virtual Musical Instruments and Audio
(
W3K Publishing
,
New York
,
2010
).
5.
A.
Gray
and
J.
Markel
, “
A spectral-flatness measure for studying the autocorrelation method of linear prediction of speech analysis
,”
IEEE Trans. Acoust. Speech Signal Process.
22
(
3
),
207
217
(
1974
).
6.
G. M.
Ljung
and
G. E. P.
Box
, “
On a measure of lack of fit in time series models
,”
Biometrika
65
(
2
),
297
303
(
1978
).
7.
K.
Drouiche
, “
A new test for whiteness
,”
IEEE Trans. Signal Proc.
48
(
7
),
1864
1871
(
2000
).
8.
D.
Rocchesso
and
J. O.
Smith
, “
Circulant and elliptic feedback delay networks for artificial reverberation
,”
IEEE Trans. Speech Audio Process.
5
(
1
),
51
63
(
1997
).
9.
D.
Rochesso
, “
Fractionally addressed delay lines
,”
IEEE Trans. Speech Audio Process.
8
(
6
),
717
727
(
2000
).
10.
D.
Rocchesso
, “
Maximally diffusive yet efficient feedback delay networks for artificial reverberation
,”
IEEE Signal Process Lett.
4
(
9
),
252
255
(
1997
).
11.
L.
Dahl
and
J. M.
Jot
, “
A reverberator based on absorbent all-pass filters
,” in
DAFx-00: Proceedings
, Verona, Italy (December 7–9,
2000
).
12.
H.
Cox
, “
Linear versus logarithmic averaging
,”
J. Acoust. Soc. Am.
39
(
4
),
688
690
(
1966
).
13.
J. I.
Makhoul
and
J. J.
Wolf
,
Linear Prediction and the Spectral Analysis of Speech
(
Bolt Beranek and Newman, Inc.
,
Cambridge, MA
,
1972
), p.
2304
.
14.
G.
Fechner
,
Elements of Psychophysics
, Vol.
1
(
Holt Rinehart Winston
,
New York
,
1966
).
15.
G. A.
Miller
and
W. G.
Taylor
, “
The perception of repeated bursts of noise
,”
J. Acoust. Soc. Am.
20
(
2
),
171
182
(
1948
).
16.
I.
Pollack
, “
Periodicity pitch for interrupted white noise—Fact or artifact?
,”
J. Acoust. Soc. Am.
45
(
1
),
237
238
(
1969
).
17.
R. W.
Wicke
and
A. J. M.
Houtsma
, “
Musical pitch of interrupted white noise
,”
J. Acoust. Soc. Am.
58
(
1
),
S83
(
1975
).
18.
H.
Duifhuis
, “
Audibility of harmonics in periodic ‘white noise
,’”
J. Acoust. Soc. Am.
54
(
1
),
316
(
1973
).
19.
G. A.
Miller
, “
Sensitivity to changes in the intensity of white noise and its relation to masking and loudness
,”
J. Acoust. Soc. Am.
19
(
4
),
609
619
(
1947
).
20.
N.
Madhu
, “
Note on measures for spectral flatness
,”
Electron. Lett.
45
(
23
),
1195
1196
(
2009
).
21.
G.
Dougherty
,
Digital Image Processing for Medical Applications
(
Cambridge University Press
,
Cambridge, UK
,
2009
), p.
251
.
22.
E. B.
Wilson
and
M. M.
Hilferty
, “
The distribution of chi-square
,”
Proc. Natl. Acad. Sci. U.S.A.
17
,
684
688
(
1931
).
23.
J. P.
Guilford
,
Psychometric Methods
(
McGraw-Hill
,
New York
,
1954
).
24.
G. A.
Gescheider
,
Psychophysics: The Fundamentals
, 3rd ed. (
Psychology Press
,
New York
,
1997
).
25.
T. N.
Cornsweet
, “
The Staircase-Method in psychophysics
,”
Am. J. Psychol.
75
(
3
),
485
491
(
1962
).
26.
P. G.
Stelmachowicz
,
K. A.
Beauchaine
,
A.
Kalberer
, and
W.
Jesteadt
, “
Normative thresholds in the 8- to 20-kHz range as a function of age
,”
J. Acoust. Soc. Am.
86
(
4
),
1384
1391
(
1989
).
27.
M. J.
Crocker
,
Handbook of Noise and Vibration Control
(
John Wiley & Sons
,
New York
,
2007
).
28.
F.
Martellotta
, “
The just noticeable difference of center time and clarity index in large reverberant spaces
,”
J. Acoust. Soc. Am.
128
(
2
),
654
663
(
2010
).
29.
A.
Buck
,
M. G.
Blevins
,
L. M.
Wang
, and
Z.
Peng
, “
Measurements of the just noticeable difference for reverberation time using a transformed up-down adaptive method
,”
J. Acoust. Soc. Am.
132
,
2060
(
2012
).
30.
D. T.
Searls
, “
An estimator for a population mean which reduces the effect of large true observations
,”
J. Am. Stat. Assoc.
61
(
316
),
1200
1204
(
1966
).
31.
F. R.
Hampel
, “
The influence curve and its role in robust estimation
,”
J. Am. Stat. Assoc.
69
(
346
),
383
393
(
1974
).
32.
G. D.
Davis
and
R.
Jones
,
The Sound Reinforcement Handbook
(
Hal Leonard Publishing Corporation
,
Milwaukee, WI
,
1989
).
33.
E.
Zwicker
, “
Subdivision of the audible frequency range into critical bands (frequenzgruppen)
,”
J. Acoust. Soc. Am.
33
(
2
),
248
(
1961
).
34.
S. S.
Stevens
and
J.
Volkmann
, “
A scale for the measurement of the psychological magnitude pitch
,”
J. Acoust. Soc. Am.
8
(
3
),
185
190
(
1937
).
35.
C. C. J. M.
Hak
,
R. H. C.
Wenmaekers
, and
L. C. J.
van Luxemburg
, “
Measuring room impulse responses: Impact of the decay range on derived room acoustic parameters
,”
Acta Acust. united Acust.
98
(
6
),
907
915
(
2012
).
36.
T.
Wendt
,
S.
Van de Par
, and
S.
Ewert
, “
A computationally-efficient and perceptually-plausible algorithm for binaural room impulse response simulation
,”
J. Audio Eng. Soc.
62
(
11
),
748
766
(
2014
).
You do not currently have access to this content.