In the past century, extensive research has been done regarding the sound propagation in Arctic ice sheets. The majority of this research has focused on low-frequency propagation over long distances. Due to changing climate conditions in these environments, experimentation is warranted to determine sound propagation characteristics in, through, and under first-year, thin ice sheets, in shallow water, over short distances. In April 2016 several experiments were conducted approximately 2 km off the coast of Barrow, Alaska on shore-fast, first-year ice, approximately 1 m thick. To determine the propagation characteristics of various sound sources, frequency response functions were measured between a source location and several receiver locations at various distances from 1 m to 1 km. The primary sources used for this experiment were, an underwater speaker with various tonal outputs, an instrumented impact hammer on the ice, and a propane cannon that produced an acoustic blast wave in air. The transmission loss (TL) characteristics of the multipath propagation (air, ice, water) are investigated and reported. Data indicate that TL in frequency bands between 125 and 2000 Hz varied from approximately 3–6 dB per doubling of distance which is consistent with geometrical spreading losses, cylindrical and spherical, respectively.

1.
M.
Ewing
and
A. P.
Crary
, “
Propagation of elastic waves in ice. Part II
,”
J. Appl. Phys.
5
,
181
184
(
1934
).
2.
M.
Ewing
,
A. P.
Crary
, and
A. M.
Thorne
, Jr.
, “
Propagation of elastic waves in ice. Part I
,”
J. Appl. Phys.
5
,
165
168
(
1934
).
3.
F.
Press
and
M.
Ewing
, “
Theory of air-coupled flexural waves
,”
J. Appl. Phys.
22
,
892
899
(
1951
).
4.
M.
Ewing
,
W. S.
Jardetzky
, and
F.
Press
,
Elastic Waves in Layered Media
(
McGraw-Hill
,
New York
,
1957
).
5.
A.
Langley
, “
The sound fields of an infinite, fluid-loaded plate excited by a point force
,”
J. Acoust. Soc. Am.
83
,
1360
1365
(
1988
).
6.
T. C.
Yang
and
T. W.
Yates
, “
Flexural waves in a floating ice sheet: Modeling and comparison with data
,”
J. Acoust. Soc. Am.
97
,
971
(
1995
).
7.
W. S.
Jardetzky
and
F.
Press
, “
Rayleigh wave coupling to atmospheric compression waves
,”
Seismol. Soc. Am.
42
(
2
),
135
144
(
1952
).
8.
R. E.
Sherrif
, “
Introduction to seismic methods
,” in
Geophysical Methods
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1989
), pp.
209
227
.
9.
W. I.
Futterman
, “
Dispersive body waves
,”
J. Geophys. Res.
67
(
13
),
5279
5291
, (
1962
).
10.
F. E.
Francios
and
T.
Wen
, “
Propagation of sound generated on the ice surface into water
,” in
Oceans
, Seattle,
1989
.
11.
F.
Press
,
A. P.
Crary
,
J.
Oliver
, and
S.
Katz
, “
Air-coupled flexural waves in floating ice
,”
Am. Geophys. Union
32
(
2
),
166
172
(
1951
).
12.
F.
Press
and
M.
Ewing
, “
Propagation of elastic waves in a floating ice sheet
,”
Am. Geophys. Union
32
(
5
),
673
678
(
1951
).
13.
A. R.
Milne
, “
Shallow water under-ice acoustics in Barrow Strait
,”
J. Acoust. Soc. Am.
32
,
1007
1016
(
1960
).
14.
K.
Hunkins
and
K.
Henry
, “
Shallow-water propagation in the Arctic Ocean
,”
J. Acoust. Soc. Am.
35
,
542
551
(
1963
).
15.
A. R.
Milne
, “
A 90 km sound transmission test in the Arctic
,”
J. Acoust. Soc. Am.
35
,
1459
1461
(
1963
).
16.
T. C.
Yang
and
G. R.
Giellis
, “
Experimental characterization of elastic waves in a floating ice sheet
,”
J. Acoust. Soc. Am.
96
,
2993
3009
(
1994
).
17.
B. E.
Miller
and
H.
Schmidt
, “
Observation and inversion of seismo-acoustic waves in a complex Arctic ice environment
,”
J. Acoust. Soc. Am.
89
,
1668
1685
(
1991
).
18.
R. W.
Knapp
, “
Observations of the air-coupled wave as a function of depth
,”
Geophysics
51
(
9
),
1853
1857
(
1986
).
19.
J.
Maslanik
,
J.
Stroeve
,
C.
Fowler
, and
W.
Emery
, “
Distribution and trends in Arctic sea ice age through Spring 2011
,”
Geophys. Res. Lett.
38
,
L13502
, (
2011
).
20.
J. C.
Stroeve
,
T.
Markus
,
L.
Boisvert
,
J.
Miller
, and
A.
Barrett
, “
Changes in Arctic melt season and implications for sea ice loss
,”
Geophys. Res. Lett.
41
,
1216
1225
, (
2014
).
21.
J.
Rodrigues
, “
The rapid decline of the sea ice in the Russian Arctic
,”
Cold Reg. Sci. Technol.
54
,
124
142
(
2008
).
22.
R.
Lei
,
H.
Xie
,
J.
Wang
,
M.
Lepparanta
,
I.
Jonsdottir
, and
Z.
Zhang
, “
Changes in sea ice conditions along the Arctic Northeast Passage from 1979–2012
,”
Cold Reg. Sci. Technol.
119
,
132
144
(
2015
).
23.
G. W.
Timco
and
W. F.
Weeks
, “
A review of the engineering properties of sea ice
,”
Cold Reg. Sci. Technol.
60
,
107
129
(
2010
).
24.
S.
Somanathan
,
P. C.
Flynn
, and
J.
Szymanski
, “
The Northwest Passage: A simulation
,” in
Winter Simulation Conference
,
2006
.
25.
L. C.
Smith
and
S. R.
Stephenson
, “
New Trans-Arctic shipping routes navigable by midcentury
,”
Proc. Natl. Acad. Sci. U.S.A.
110
(
13
),
1191
1195
(
2013
).
26.
S. R.
Stephenson
,
L. W.
Brigham
, and
L. C.
Smith
, “
Marine accessibility along Russia's Northern Sea route
,”
Polar Geogr.
37
(
2
),
111
133
(
2014
).
27.
G. J.
Heard
,
M.
McDonald
,
N. R.
Chapman
, and
L.
Jaschke
, “
Underwater lightbulb implosions: A useful acoustic source
,” in
IEEE/Oceans
,
1997
.
28.
S. E.
Dosso
,
G. J.
Heard
, and
M.
Vinnins
, “
Seismo-acoustic propagation in an ice-covered arctic ocean environment
,” in
MTS/IEEE Oceans
Honolulu,
2001
.
29.
D. L.
Brown
and
R. J.
Allemang
, “
Review of spatial domain modal parameter estimation procedures and testing methods
,” in
IMAC
2009
.
30.
W.
Heylen
,
S.
Lammens
, and
P.
Sas
,
Modal Analysis Theory and Testing
(
K.U. Leuven
,
2013
).
31.
C. V.
Karsen
, “
Averaging for improved frequency response functions
,”
S.V. Sound and Vibration
18
(8),
18
24
(
1984
).
32.
H. W.
Lord
,
W. S.
Gatley
, and
H. A.
Evensen
,
Noise Control for Engineers
(
Krieger
,
Malabar, CA
,
1980
).
33.
CastAway User Manual—CTD Principles of Operation
,”
2010
, p.
74
.
34.
N. P.
Fofonoff
and
R. C.
Millard
, “
Algorithms for computation of fundamental properties of seawater
,” Unesco Technical Papers in Marine Science, no. 44,
1983
.
35.
J. S.
Bendat
and
A. G.
Piersol
,
Random Data: Analysis and Measurement Procedures
, 3rd ed. (
Wiley
,
New York
,
2000
).
36.
L. E.
Kinsler
,
A. R.
Frey
,
A. B.
Coppens
, and
J. V.
Sanders
,
Fundamentals of Acoustics
(
Wiley
,
New York
,
1999
).
37.
G. W.
Timco
and
R. M. W.
Frederking
, “
A review of sea ice density
,”
Cold Reg. Sci. Technol.
24
,
1
6
(
1996
).
38.
N. K.
Sinha
, “
Effective Poisson's ratio of isotropic ice
,” in
International Offshore Mechanics and Arctic Engineering Symposium
, Houston, TX,
1987
, Vol. IV, pp.
189
195
.
39.
J. R.
Murat
and
L. M.
Lainey
, “
Some experimental observations on the Poisson's ratio of sea ice
,”
Cold Reg. Sci. Technol.
6
,
105
113
(
1982
).
40.
A.
Traetteberg
,
L. W.
Gold
, and
R.
Frederking
, “
The Strain rate and temperature dependence of Young's modulus of ice
,” in
IAHR International Symposium on ICE Problems
, Hanover, New Hampshire,
1975
, Vol. 3.
41.
M. P.
Langleben
, “
Young's modulus for sea ice
,”
Can. J. Phys.
40
(
1
),
1
8
(
1962
).
42.
S. A.
Hambric
,
S. H.
Sung
, and
D. J.
Nefske
,
Engineering Vibroacoustic Analysis: Methods and Applications
, 1st ed. (
Wiley
,
New York
,
2016
).
43.
S. P.
Pecknold
,
N.
Pelavas
, and
G. J.
Heard
, “
Measurements and modeling of transmission loss variability in Barrow Strait
,” in
ICA
, Montreal (
Acoustical Society of America
,
New York
,
2013
), Vol. 19.
44.
R. J.
Urick
, “
Propagation of sound in the sea: Transmission loss, I and II
,” in
Principles of Underwater Sound
, 3rd ed. (
Peninsula
,
Los Altos, CA
,
1996
).
You do not currently have access to this content.