Electromagnetic acoustic transducers (EMATs) with concentric meander-line (CML) coils possess the capability of producing point-focusing shear vertical (PFSV) waves. For the CML coil, an intercepted circular arc of the concentric circle with a continuously changing spacing, the aperture angle is a key factor effecting the point-focusing performance. Thus, the influence of aperture angles of CML coils on the point-focusing behavior of PFSV-EMATs is analyzed using the established finite element modeling in detail, which also considers the effect of lift-off distance on the signal amplitude. The beam directional pattern is characterized quantitatively by the half-power beam width, indicating the relationship between the aperture angle and beam width. In addition, since the focus offset is sensitive in depth direction, the effect of design focal depths on focal offset is also carefully studied. Three CML coils with an aperture angle of 30°, 90°, and 150° are fabricated by printed circuit board technique and experimentally analyzed; the experimental results are well consistent with the simulation results. These findings can be used to design optimized PFSV-EMATs with good point-focusing performance.

1.
Alers
,
G. A.
, and
MacLauchlan
,
D. T.
(
1983
). “
High frequency, angle beam EMATs for weld inspection
,”
Rev. Prog. Quant. Nondestr. Eval.
2A
,
271
281
.
2.
Alleyne
,
D. N.
, and
Cawley
,
P.
(
1997
). “
Long range propagation of Lamb waves in chemical plant pipework
,”
Mater. Eval.
55
(
4
),
504
508
.
3.
Baillie
,
I.
,
Griffith
,
P.
,
Jian
,
X.
, and
Dixon
,
S.
(
2007
). “
Implementing an ultrasonic inspection system to find surface and internal defects in hot, moving steel using EMATs
,”
Insight
49
(
2
),
87
92
.
4.
Dewhurst
,
R. J.
,
Edwards
,
C.
, and
Palmer
,
S. B.
(
1986
). “
Noncontact detection of surface-breaking cracks using a laser acoustic source and an electromagnetic acoustic receiver
,”
Appl. Phys. Lett.
49
(
7
),
374
376
.
5.
Hirao
,
M.
, and
Ogi
,
H.
(
2003
).
EMATs for Science and Industry: Noncontacting Ultrasonic Measurements
(
Kluwer
,
Norwell, MA
).
6.
Kang
,
L.
,
Dixon
,
S.
,
Wang
,
K.
, and
Dai
,
J.
(
2013
). “
Enhancement of signal amplitude of surface wave EMATs based on 3-D simulation analysis and orthogonal test method
,”
NDT&E Int.
59
(
7
),
11
17
.
7.
Kim
,
B. G.
,
Lee
,
J. O.
, and
Lee
,
S.
(
1993
). “
New design and analysis for point-focusing of surface waves in contact testing
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
40
(
2
),
162
166
.
8.
Ludwig
,
R.
, and
Ḋai
,
X.
(
1991
). “
Numerical simulation of electromagnetic acoustic transducer in the time domain
,”
J. Appl. Phys.
69
(
1
),
89
98
.
9.
Ludwig
,
R.
,
You
,
Z.
, and
Palanisamy
,
R.
(
2003
). “
Numerical simulations of an electromagnetic acoustic transducer–receiver system for NDT applications
,”
IEEE Trans. Magn.
29
(
3
),
2081
2089
.
10.
Miller
,
G. F.
, and
Pursey
,
H.
(
1954
). “
The field and radiation impedance of mechanical radiators on the free surface of a semi-infinite isotropic solid
,”
Proc. R. Soc. London
223
(
1155
),
521
541
.
11.
Nakamura
,
N.
,
Ashida
,
K.
,
Takishita
,
T.
,
Ogi
,
H.
, and
Hirao
,
M.
(
2016
). “
Inspection of stress corrosion cracking in welded stainless steel pipe using point-focusing electromagnetic-acoustic transducer
,”
NDT&E Int.
83
,
88
93
.
12.
Ogi
,
H.
,
Hirao
,
M.
, and
Ohtani
,
T.
(
1997
). “
Flaw detection by line-focusing electromagnetic acoustic transducers
,”
Proc. IEEE Ultrason. Symp.
1
(
1
),
653
656
.
13.
Ogi
,
H.
,
Hirao
,
M.
, and
Ohtani
,
T.
(
1998
). “
Line-focusing of ultrasonic SV wave by electromagnetic acoustic transducer
,”
J. Acoust. Soc. Am.
103
(
5
),
2411
2415
.
14.
Ogi
,
H.
,
Hirao
,
M.
, and
Ohtani
,
T.
(
1999
). “
Line-focusing electromagnetic acoustic transducers for the detection of slit defects
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
(
2
),
341
346
.
15.
Petcher
,
P. A.
,
Potter
,
M. D. G.
, and
Dixon
,
S.
(
2014
). “
A new electromagnetic acoustic transducer (EMAT) design for operation on rail
,”
NDT&E Int.
65
(
3
),
1
7
.
16.
Takishita
,
T.
,
Ashida
,
K.
,
Nakamura
,
N.
,
Ogi
,
H.
, and
Hirao
,
M.
(
2015
). “
Development of shear-vertical-wave point-focusing electromagnetic acoustic transducer
,”
Jpn. J. Appl. Phys.
54
(
7S1
),
07HC04
.
17.
Thring
,
C. B.
,
Fan
,
Y.
, and
Edwards
R. S.
(
2016
). “
Focused Rayleigh wave EMAT for characterisation of surface-breaking defects
,”
NDT&E Int.
81
,
20
27
.
18.
Thring
,
C. B.
,
Fan
,
Y.
, and
Edwards
R. S.
(
2017
). “
Multi-coil focused EMAT for characterisation of surface-breaking defects of arbitrary orientation
,”
NDT&E Int.
88
,
1
7
.
19.
Wang
,
S.
,
Huang
,
S.
,
Zhang
,
Y.
, and
Zhao
,
W.
(
2016
). “
Multiphysics modeling of a Lorentz force-based meander coil electromagnetic acoustic transducer via steady-state and transient analyses
,”
IEEE Sensors J.
16
(
17
),
6641
6651
.
20.
Wang
,
S.
,
Su
,
R.
,
Chen
,
X.
,
Kang
,
L.
, and
Zhai
,
G.
(
2013
). “
Numerical and experimental analysis of unidirectional meander-line coil electromagnetic acoustic transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
(
12
),
2657
2664
.
21.
Wang
,
X.
,
Littman
,
M. G.
,
McManus
,
J. B.
,
Tadi
,
M.
,
Kim
,
Y. S.
,
Askar
,
A.
, and
Rabitz
,
H.
(
1996
). “
Focused bulk ultrasonic waves generated by ring-shaped laser illumination and application to flaw detection
,”
J. Appl. Phys.
80
(
8
),
4274
4281
.
22.
Wilcox
,
P.
,
Lowe
,
M.
, and
Cawley
,
P.
(
2003
). “
An EMAT array for the rapid inspection of large structures using guided waves
,”
Rev. Prog. Quant. Nondestr. Eval.
657
(
1
),
814
821
.
23.
Wilcox
,
P.
,
Lowe
,
M.
, and
Cawley
,
P.
(
2005
). “
Omnidirectional guided wave inspection of large metallic plate structures using an EMAT array
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
(
4
),
653
665
.
24.
Zhu
,
W.
, and
Rose
,
J. L.
(
1999
). “
Lamb wave generation and reception with time-delay periodic linear arrays: A BEM simulation and experimental study
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
(
3
),
654
664
.
You do not currently have access to this content.