This paper develops a model to predict if listeners would be likely to complain due to annoyance when exposed to a certain noise signal with a prominent tone, such as those commonly produced by heating, ventilation, and air-conditioning systems. Twenty participants completed digit span tasks while exposed in a controlled lab to noise signals with differing levels of tones, ranging from 125 to 1000 Hz, and overall loudness. After completing the digit span tasks under each noise signal, from which task accuracy and speed of completion were captured, subjects were asked to rate level of annoyance and indicate the likelihood of complaining about the noise. Results show that greater tonality in noise has statistically significant effects on task performance by increasing the time it takes for participants to complete the digit span task; no statistically significant effects were found on task accuracy. A logistic regression model was developed to relate the subjective annoyance responses to two noise metrics, the stationary Loudness and Tonal Audibility, selected for the model due to high correlations with annoyance responses. The percentage of complaints model showed better performance and reliability over the percentage of highly annoyed or annoyed.

1.
AHRI/ANSI 1140-2012
(
2012
).
Sound Quality Evaluation Procedures for Air-Conditioning and Refrigeration Equipment
(
Air-Conditioning, Heating, and Refrigeration Institute
,
Arlington, VA
).
2.
ANSI/ASA S12.10-2010/Part 1
(
2010
).
Acoustics—Measurement of Airborne Noise Emitted by Information Technology and Telecommunications Equipment—Part 1: Determination of Sound Power Level and Emission Sound Pressure Level
(
American National Standards Institute
,
New York
).
3.
Aures
,
W.
(
1985
). “
Procedure for calculating the sensory euphony of arbitrary sound signals
,”
Acustica
59
,
130
141
.
4.
Beranek
,
L. L.
(
1957
). “
Revised criteria for noise in buildings
,”
Noise Control
3
,
19
27
.
5.
Berglund
,
B.
,
Hassmén
,
P.
, and
Preis
,
A.
(
2002
). “
Annoyance and spectral contrast are cues for similarity and preference of sounds
,”
J. Sound Vib.
250
,
53
64
.
6.
Blazier
,
W. E.
(
1981
). “
Revised noise criteria for application in the acoustical design and rating of HVAC systems
,”
Noise Control Eng.
16
,
64
73
.
7.
Cox
,
D. R.
, and
Snell
,
E. J.
(
1989
).
Analysis of Binary Data
(
CRC Press
,
Boca Raton, FL
), Vol.
32
.
8.
Fidell
,
S.
,
Barber
,
D. S.
, and
Schultz
,
T. J.
(
1991
). “
Updating a dosage–effect relationship for the prevalence of annoyance due to general transportation noise
,”
J. Acoust. Soc. Am.
89
,
221
233
.
9.
Fidell
,
S.
,
Mestre
,
V.
,
Schomer
,
P.
,
Berry
,
B.
,
Gjestland
,
T.
,
Vallet
,
M.
, and
Reid
,
T.
(
2011
). “
A first-principles model for estimating the prevalence of annoyance with aircraft noise exposure
,”
J. Acoust. Soc. Am.
130
,
791
806
.
10.
Field
,
A.
(
2013
).
Discovering Statistics Using IBM SPSS Statistics
(
SAGE Publications
,
London
), Chap. 8, pp.
264
315
.
11.
Francis
,
J. M.
,
Lee
,
J.
, and
Wang
,
L. M.
(
2014
). “
SE-14-C043: Determining annoyance thresholds of tones in noise
,”
ASHRAE Tran.
120
,
1
8
.
12.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
(
2001
).
The Elements of Statistical Learning
(
Springer
,
New York
).
13.
Glasberg
,
B. R.
, and
Moore
,
B. C.
(
2006
). “
Prediction of absolute thresholds and equal-loudness contours using a modified loudness model
,”
J. Acoust. Soc. Am.
120
,
585
588
.
14.
Guski
,
R.
,
Felscher-Suhr
,
U.
, and
Schuemer
,
R.
(
1999
). “
The concept of noise annoyance: How international experts see it
,”
J. Sound Vib.
223
,
513
527
.
15.
Hansen
,
H.
,
Jesko
,
L. V.
, and
Reinhard
,
W.
(
2011
). “
The magnitude of tonal content. A review
,”
Acta Acust. united Acust.
97
,
355
363
.
16.
Hastings
,
A.
,
Lee
,
K. H.
,
Davies
,
P.
, and
Surprenant
,
A. M.
(
2003
). “
Measurement of the attributes of complex tonal components commonly found in product sound
,”
Noise Control Eng. J.
51
,
195
209
.
17.
Hellman
,
R. P.
(
1985
). “
Perceived magnitude of two-tone-noise complexes: Loudness, annoyance, and noisiness
,”
J. Acoust. Soc. Am.
77
,
1497
1504
.
18.
ISO 532-1:2017
(
2017
).
Acoustics—Method for Calculating Loudness—Part 1: Zwicker Method
(
International Organization for Standardization
,
Geneva, Switzerland
).
19.
ISO 532-2:2017
(
2017
).
Acoustics—Method for Calculating Loudness—Part 2: Moore-Glasberg Method
(
International Organization for Standardization
,
Geneva, Switzerland
).
20.
ISO/TS 15666:2003
(
2003
).
Acoustics—Assessment of Noise Annoyance by Means of Social and Socio-Acoustic Surveys
(
International Organization for Standardization
,
Geneva, Switzerland
).
21.
ISO 1996-2:2007
(
2007
).
Acoustics—Description, Measurement and Assessment of Environmental Noise—Part 2: Determination of Environmental Noise Levels
(
International Organization for Standardization
,
Geneva, Switzerland
).
22.
Jahanshahi
,
M.
,
Saleem
,
T.
,
Ho
,
A. K.
,
Fuller
,
R.
, and
Dirnberger
,
G.
(
2008
). “
A preliminary investigation of the running digit span as a test of working memory
,”
Behav. Neurol.
20
,
17
25
.
23.
Janssen
,
S. A.
,
Vos
,
H.
,
Eisses
,
A. R.
, and
Pedersen
,
E.
(
2011
). “
A comparison between exposure-response relationships for wind turbine annoyance and annoyance due to other noise sources
,”
J. Acoust. Soc. Am.
130
,
3746
3753
.
24.
Kryter
,
K. D.
(
1960
). “
The meaning and measurement of perceived noise level
,”
Noise Control
6
,
12
27
.
25.
Kryter
,
K. D.
(
1982
). “
Community annoyance from aircraft and ground vehicle noise
,”
J. Acoust. Soc. Am.
72
,
1222
1242
.
26.
Kryter
,
K. D.
, and
Pearsons
,
K. S.
(
1965
). “
Judged noisiness of a band of random noise containing an audible pure tone
,”
J. Acoust. Soc. Am.
38
,
106
112
.
27.
Landström
,
U.
,
Åkerlund
,
E.
,
Kjellberg
,
A.
, and
Tesarz
,
M.
(
1995
). “
Exposure levels, tonal components, and noise annoyance in working environments
,”
Environ. Int.
21
,
265
275
.
28.
Lee
,
J.
,
Francis
,
J. M.
, and
Wang
,
L. M.
(
2017
). “
How tonality and loudness of noise relate to annoyance and task performance
,”
Noise Control Eng. J.
65
,
71
82
.
29.
Little
,
J. W.
(
1961
). “
Human response to jet engine noises
,”
Noise Control
7
,
11
13
.
30.
Marquis-Favre
,
C.
,
Premat
,
E.
, and
Aubrée
,
D.
(
2005
). “
Noise and its effects—A review on qualitative aspects of sound Part II: Noise and annoyance
,”
Acta Acust. united Acust.
91
,
626
642
.
31.
Miedema
,
H. M.
, and
Vos
,
H.
(
1998
). “
Exposure-response relationships for transportation noise
,”
J. Acoust. Soc. Am.
104
,
3432
3445
.
32.
Miedema
,
H. M.
, and
Oudshoorn
,
C.
(
2002
).
Position Paper on Dose Response Relationships Between Transportation Noise and Annoyance. EU's Future Noise Policy, WG2–Dose/Effect
(
European Communities
,
Luxembourg
).
33.
Mølhave
,
L.
,
Bach
,
B.
, and
Pedersen
,
O. F.
(
1986
). “
Human reactions to low concentrations of volatile organic compounds
,”
Environ. Int.
12
,
167
175
.
34.
More
,
S.
, and
Davies
,
P.
(
2010
). “
Human responses to the tonalness of aircraft noise
,”
Noise Control Eng. J.
58
,
420
440
.
35.
Pedersen
,
E.
,
van den Berg
,
F.
,
Bakker
,
R.
, and
Bouma
,
J.
(
2009
). “
Response to noise from modern wind farms in The Netherlands
,”
J. Acoust. Soc. Am.
126
,
634
643
.
36.
Pedersen
,
T. H.
(
2007
).
The “Genlyd” Noise Annoyance Model: Dose-Response Relationships Modelled by Logistic Functions
(
DELTA Acoustics & Vibration
,
Hørsholm, Denmark
).
37.
Pedersen
,
T. H.
,
Søndergaard
,
M.
, and
Andersen
,
B.
(
2000
).
Objective Method for Assessing the Audibility of Tones in Noise Joint Nordic Method—Version 2
(
DELTA Acoustics & Vibration
,
Hørsholm, Denmark
).
38.
Ryherd
,
E. E.
, and
Wang
,
L. M.
(
2008
). “
Implications of human performance and perception under tonal noise conditions on indoor noise criteria
,”
J. Acoust. Soc. Am.
124
,
218
226
.
39.
Ryherd
,
E. E.
, and
Wang
,
L. M.
(
2010
). “
AB-10-018: The effects of noise from building mechanical systems with tonal components on human performance and perception (1322-RP)
,”
ASHRAE Tran.
116
,
541
552
.
40.
Sailer
,
U.
, and
Hassenzahl
,
M.
(
2000
). “
Assessing noise annoyance: An improvement-oriented approach
,”
Ergonomics
43
,
1920
1938
.
41.
Schomer
,
P. D.
(
2001
).
A White Paper: Assessment of Noise Annoyance
(
Schomer and Associates
,
Champaign, IL
).
42.
Schomer
,
P. D.
(
2005
). “
Criteria for assessment of noise annoyance
,”
Noise Control Eng. J.
53
,
125
137
.
43.
Schultz
,
T. J.
(
1978
). “
Synthesis of social surveys on noise annoyance
,”
J. Acoust. Soc. Am.
64
,
377
405
.
44.
Schutte
,
M.
,
Marks
,
A.
,
Wenning
,
E.
, and
Griefahn
,
B.
(
2007
). “
The development of the noise sensitivity questionnaire
,”
Noise Heal.
9
,
15
24
.
45.
Susini
,
P.
,
McAdams
,
S.
,
Winsberg
,
S.
,
Perry
,
I.
,
Vieillard
,
S.
, and
Rodet
,
X.
(
2004
). “
Characterizing the sound quality of air-conditioning noise
,”
Appl. Acoust.
65
,
763
790
.
46.
Tang
,
S. K.
(
1997
). “
A distribution function applicable to office noise study
,”
J. Sound Vib.
208
,
603
615
.
47.
World Health Organization
(
2011
).
Burden of Disease from Environmental Noise: Quantification of Healthy Life Years Lost in Europe
(
WHO Regional Office for Europe
,
Copenhagen, Denmark
).
48.
Zwicker
,
E.
(
1961
). “
Subdivision of the audible frequency range into critical bands (Frequenzgruppen)
,”
J. Acoust. Soc. Am.
33
,
248
.
You do not currently have access to this content.