Many geoacoustic models have been developed to study sandy sediments. In this work, Bayesian inference techniques are used to compare three such models: the VGS(λ) model, the most recent of Buckingham's viscous grain-shearing models, the Biot-Stoll poroelastic model, and an extension to the Biot-Stoll model proposed by Chotiros called the corrected and reparametrized extended Biot (CREB) model. First, Bayesian inversion is applied to wave speed and attenuation measurements previously made in the laboratory to determine the degree to which each of the model input parameters can be resolved by wave speed and attenuation data. Then, Bayesian model selection techniques are utilized to assess the degree to which the predictions of these models match the measured data and to ascertain the Bayesian evidence in favor of each. Through these studies it is determined that the VGS(λ) and CREB models outperform the Biot-Stoll model, both in terms of parameter resolution and in their ability to produce predictions in agreement with measurements. The VGS(λ) model is seen to have the highest degree of Bayesian evidence in its favor.

1.
E.
Hamilton
, “
Geoacoustic modeling of the sea floor
,”
J. Acoust. Soc. Am.
68
,
1313
1340
(
1980
).
2.
D.
Jackson
and
M.
Richardson
,
High-Frequency Seafloor Acoustics
(
Springer
,
New York
,
2007
), pp.
7
27
, 245–306.
3.
N.
Chotiros
,
Acoustics of the Seabed as a Poroelastic Medium
(
Springer
,
Cham, Switerzland
,
2017
), pp.
1
2
, 25–76.
4.
M.
Biot
, “
Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
).
5.
M.
Biot
, “
Theory of propagation of elastic waves in a fluid saturated porous solid. II. High frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
6.
R.
Stoll
,
Sediment Acoustics
(
Springer-Verlag
,
New York
,
1989
), pp.
1
101
.
7.
K.
Williams
, “
Forward scattering from a rippled sand/water interface: Modeling, measurements, and determination of the plane wave, flat surface reflection coefficient
,”
IEEE J. Ocean Eng.
34
,
399
406
(
2009
).
8.
M.
Isakson
,
N.
Chotiros
,
R.
Yarbrough
, and
J.
Piper
, “
Quantifying the effects of roughness scattering on reflection loss measurements
,”
J. Acoust. Soc. Am.
132
,
3687
3697
(
2012
).
9.
K.
Williams
,
D.
Jackson
,
E.
Thoros
,
D.
Tang
, and
K.
Briggs
, “
Acoustic backscattering experiments in a well characterized sand sediment: Data/model comparisons using sediment fluid and Biot models
,”
IEEE J. Ocean Eng.
27
,
376
387
(
2002
).
10.
N.
Chotiros
and
M.
Isakson
, “
A broadband model of sandy ocean sediments: Biot-Stoll with contact squirt flow and shear drag
,”
J. Acoust. Soc. Am.
116
,
2011
2022
(
2004
).
11.
N.
Chotiros
and
M.
Isakson
, “
Shear wave attenuation and micro-fluidics in water-saturated sand and glass beads
,”
J. Acoust. Soc. Am.
135
,
3264
3279
(
2014
).
12.
M.
Buckingham
, “
Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments
,”
J. Acoust. Soc. Am.
108
,
2796
2815
(
2000
).
13.
M.
Buckingham
, “
On pore-fluid viscosity and the wave properties of saturated granular materials including marine sediments
,”
J. Acoust. Soc. Am.
122
,
1486
1501
(
2007
).
14.
M.
Buckingham
, “
Response to ‘Comments on “Pore fluid viscosity and the wave properties of saturated granular materials including marine sediments [J. Acoust. Soc. Am. 127, 2095–2098 (2010)]” ’
,”
J. Acoust. Soc. Am.
127
,
2099
2102
(
2010
).
15.
M.
Buckingham
, “
Compressional and shear wave properties of marine sediments: Comparisons between theory and data
,”
J. Acoust. Soc. Am.
117
,
137
152
(
2005
).
16.
M.
Buckingham
, “
Analysis of shear-wave attenuation in unconslidated sands and glass beads
,”
J. Acoust. Soc. Am.
136
,
2478
2488
(
2014
).
17.
M.
Kimura
, “
Velocity dispersion and attenuation in granular marine sediments: Comparison of measurements with predictions using acoustic models
,”
J. Acoust. Soc. Am.
129
,
3544
3561
(
2011
).
18.
M.
Kimura
, “
Shear wave speed dispersion and attenuation in granular marine sediments
,”
J. Acoust. Soc. Am.
134
,
144
155
(
2013
).
19.
P.
Gerstoft
and
C.
Mecklenbräuker
, “
Ocean acoustic inversion with estimation of a posteriori probability distributions
,”
J. Acoust. Soc. Am.
104
,
808
819
(
1998
).
20.
S.
Dosso
, “
Quantifying uncertainty in geoacoustic inversion. I. A fast Gibbs sampler approach
,”
J. Acoust. Soc. Am.
111
,
129
142
(
2002
).
21.
S.
Dosso
and
P.
Nielson
, “
Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data
,”
J. Acoust. Soc. Am.
111
,
143
159
(
2002
).
22.
P.
Gerstoft
,
C.
Huang
, and
W.
Hodgkiss
, “
Estimation of transmission loss in the presence of geoacoustic inversion uncertainty
,”
IEEE J. Ocean Eng.
31
,
299
307
(
2006
).
23.
C.
Huang
,
P.
Gerstoft
, and
W.
Hodgkiss
, “
Validation of statistical estimation of transmission loss in the presence of geoacoustic inversion uncertainty
,”
J. Acoust. Soc. Am.
120
,
1932
1941
(
2006
).
24.
J.
Dettmer
,
S.
Dosso
, and
C.
Holland
, “
Uncertainty estimation in seismo-acoustic reflection travel time inversion
,”
J. Acoust. Soc. Am.
122
,
161
176
(
2007
).
25.
J.
Dettmer
,
S.
Dosso
, and
C.
Holland
, “
Joint time/frequency-domain inversion of reflection data for seabed geoacoustic profiles and uncertainties
,”
J. Acoust. Soc. Am.
123
,
1306
1317
(
2008
).
26.
S.
Dosso
and
M.
Wilmut
, “
Uncertainty estimation in simultaneous Bayesian tracking and environmental inversion
,”
J. Acoust. Soc. Am.
124
,
82
97
(
2008
).
27.
S.
Dosso
,
C.
Holland
, and
M.
Sambridge
, “
Parallel tempering for strongly nonlinear geoacoustic inversion
,”
J. Acoust. Soc. Am.
132
,
3030
3040
(
2012
).
28.
J.
Dettmer
and
S.
Dosso
, “
Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains
,”
J. Acoust. Soc. Am.
132
,
2239
2250
(
2012
).
29.
D.
Battle
,
P.
Gerstoft
,
W.
Hodgkiss
,
W.
Kuperman
, and
P.
Nielsen
, “
Bayesian model selection applied to self-noise geoacoustic inversion
,”
J. Acoust. Soc. Am.
116
,
2043
2056
(
2004
).
30.
J.
Dettmer
,
S.
Dosso
, and
C.
Holland
, “
Model selection and Bayesian inference for high-resolution seabed reflection and inversion
,”
J. Acoust. Soc. Am.
125
,
706
716
(
2009
).
31.
J.
Dettmer
,
S.
Dosso
, and
C.
Holland
, “
Trans-dimensional geoacoustic inversion
,”
J. Acoust. Soc. Am.
128
,
3393
3405
(
2010
).
32.
J.
Dettmer
,
S.
Dosso
, and
J.
Osler
, “
Bayesian evidence computation for model selection in non-linear geoacoustic inference problems
,”
J. Acoust. Soc. Am.
128
,
3406
3415
(
2010
).
33.
C.
Holland
and
J.
Dettmer
, “
In situ sediment dispersion estimates in the presence of discrete layers and gradients
,”
J. Acoust. Soc. Am.
133
,
50
61
(
2013
).
34.
G.
Steininger
,
S.
Dosso
,
C.
Holland
, and
J.
Dettmer
, “
Estimating seabed scattering mechanisms via Bayesian model selection
,”
J. Acoust. Soc. Am.
136
,
1552
1562
(
2014
).
35.
A.
Pierce
and
W.
Carey
, “
Low-frequency attenuation of acoustic waves in sandy/silty marine sediments
,”
J. Acoust. Soc. Am.
124
,
EL308
EL312
(
2008
).
36.
R.
Stoll
and
G.
Bryan
, “
Wave attenuation in saturated sediments
,”
J. Acoust. Soc. Am.
47
,
1440
1447
(
1970
).
37.
R.
Stoll
, “
Acoustic waves in ocean sediments
,”
Geophysics
42
,
715
725
(
1977
).
38.
R.
Stoll
and
T.
Kan
, “
Reflection of acoustic waves at a water-sediment interface
,”
J. Acoust. Soc. Am.
70
,
149
156
(
1981
).
39.
A.
Turgut
, “
An investigation of causality for Biot models by using Kramers-Krönig relations
,” in
Shear Waves in Marine Sediments
, edited by
J. M.
Hovem
,
M. D.
Richardson
, and
R. D.
Stoll
(
Springer
,
Dordrecht, the Netherlands
,
1991
), pp.
21
28
.
40.
J.
Dvorkin
and
A.
Nur
, “
Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms
,”
Geophysics
58
,
524
533
(
1993
).
41.
A.
Tarantola
,
Inverse Problem Theory and Methods for Model Parameter Estimation
(
SIAM
,
Philadelphia
,
2005
), pp.
1
75
,179–180.
42.
M.
Sen
and
P.
Stoffa
,
Global Optimization Methods in Geophysical Inversion
(
Cambridge University Press
,
Cambridge, UK
,
2013
), pp.
72
80
, 241–267.
43.
R.
Aster
,
B.
Borchers
, and
C.
Thurber
,
Parameter Estimation and Inverse Problems
, 2nd ed. (
Academic Press
,
Waltham, MA
,
2013
), pp.
253
280
.
44.
R.
Kass
and
A.
Raftery
, “
Bayes factors
,”
J. Am. Stat. Assoc.
90
,
773
795
(
1995
).
45.
C.
Fackler
, “
Bayesian model selection for analysis and design of multilayer sound absorbers
,” Ph.D. thesis,
Rensselaer Polytechnic Institute
, Troy, NY, 2014.
46.
C.
Brunetti
,
N.
Linde
, and
J. A.
Vrugt
, “
Bayesian model selection in hydrogeophysics: Application to conceptual subsurface models of the south oyster bacterial transport site, Virginia, USA
,”
Adv. Water Resour.
102
,
127
141
(
2017
).
47.
T.
Jasa
and
N.
Xiang
, “
Nested sampling applied in Bayesian room-acoustics delay analysis
,”
J. Acoust. Soc. Am.
132
,
3251
3262
(
2012
).
48.
D.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
49.
K.
Williams
, “
An effective density fluid model for acoustic propagation in sediments derived from Biot theory
,”
J. Acoust. Soc. Am.
110
,
2276
2281
(
2001
).
50.
K.
Williams
,
D.
Jackson
,
E.
Thoros
,
D.
Tang
, and
S.
Schock
, “
Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media
,”
IEEE J. Ocean Eng.
27
,
413
428
(
2002
).
You do not currently have access to this content.