An automatic component detection method for overlapping transient pulses in multi-component signals is presented and evaluated. The recently proposed scaled reassignment technique is shown to have the best achievable resolution for closely located Gaussian shaped transient pulses, even in heavy disruptive noise. As a result, the method automatically detects and counts the number of transients, giving the center times and center frequencies of all components with considerable accuracy. The presented method shows great potential for applications in several acoustic research fields, where coinciding Gaussian shaped transients are analyzed. The performance is tested on measured data from a laboratory pulse-echo setup and from a dolphin echolocation signal measured simultaneously at two different locations in the echolocation beam. Since the method requires little user input, it should be easily employed in a variety of research projects.

1.
Au
,
W.
(
1993
).
The Sonar of Dolphins
(
Springer-Verlag
,
New York
).
2.
Au
,
W.
,
Branstetter
,
B.
,
Moore
,
P.
, and
Finneran
,
J.
(
2012
). “
Dolphin biosonar signals measured at extreme off-axis angles: Insights to sound propagation in the head
,”
J. Acoust. Soc. Am.
132
(
2
),
1199
1206
.
3.
Au
,
W. W. L.
(
1980
). “
Echolocation signals of the atlantic bottlenose dolphin (tursiops truncatus) in open waters
,” in
Animal Sonar Systems
, edited by
R.-G.
Busnel
and
J. F.
Fish
(
Springer US
,
Boston, MA
), pp.
251
282
.
4.
Auger
,
F.
, and
Flandrin
,
P.
(
1995
). “
Improving the readability of time-frequency and time-scale representations by the reassignment method
,”
IEEE Trans. Signal Process.
43
,
1068
1089
.
5.
Balazs
,
P.
,
Dörfler
,
M.
,
Jaillet
,
F.
,
Holighaus
,
N.
, and
Velasco
,
G.
(
2011
). “
Theory, implementation and applications of nonstationary Gabor frames
,”
J. Comput. Appl. Math.
236
,
1481
1496
.
6.
Barkat
,
B.
, and
Abed-Meraim
,
K.
(
2004
). “
Algorithms for blind components separation and extraction from the time-frequency distribution of their mixture
,”
EURASIP J. Appl. Signal Process.
2004
,
978487
.
7.
Capus
,
C.
,
Pailhas
,
Y.
,
Brown
,
K.
,
Lane
,
D.
,
Moore
,
P.
, and
Houser
,
D.
(
2007
). “
Bio-inspired wideband sonar signals based on observations of the bottlenose dolphin (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
121
(
1
),
594
604
.
8.
Chassande-Mottin
,
E.
,
Auger
,
F.
, and
Flandrin
,
P.
(
2008
). “
Reassignment
,” in
Time-Frequency Analysis
, edited by
F.
Hlawatsch
and
F.
Auger
(
ISTE
,
London
), Chap. 9, pp.
249
277
.
9.
Choi
,
H.-I.
, and
Williams
,
W. J.
(
1989
). “
Improved time-frequency representation of multi-component signals using exponential kernels
,”
IEEE Trans. Acoustics, Speech Signal Process.
37
,
862
871
.
10.
Cirillo
,
L. A.
, and
Amin
,
M. G.
(
2003
). “
Auto-term detection using time-frequency array processing
,” in
IEEE International Conference on Acoustics, Speech, and Signal Processing
, Vol.
6
, pp.
VI-465
VI-468
.
11.
Cohen
,
L.
(
1995
).
Time-Frequency Analysis, Signal Processing Series
(
Prentice-Hall
,
Upper Saddle River, NJ
).
12.
Cranford
,
T. W.
,
Elsberry
,
W. R.
,
Bonn
,
W. G. V.
,
Jeffress
,
J. A.
,
Chaplin
,
M. S.
,
Blackwood
,
D. J.
,
Carder
,
D. A.
,
Kamolnick
,
T.
,
Todd
,
M. A.
, and
Ridgway
,
S. H.
(
2011
). “
Observation and analysis of sonar signal generation in the bottlenose dolphin (Tursiops truncatus): Evidence for two sonar sources
,”
J. Exp. Marine Biol. Ecol.
407
(
1
),
81
96
.
13.
Daubechies
,
I.
,
Lu
,
J.
, and
Wu
,
H.-T.
(
2011
). “
Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool
,”
Appl. Comput. Harmonic Anal.
30
(
2
),
243
261
.
14.
Finneran
,
J. J.
,
Branstetter
,
B. K.
,
Houser
,
D. S.
,
Moore
,
P. W.
,
Mulsow
,
J.
,
Martin
,
C.
, and
Perisho
,
S.
(
2014
). “
High-resolution measurement of a bottlenose dolphin's (Tursiops truncatus) biosonar transmission beam pattern in the horizontal plane
,”
J. Acoust. Soc. Am.
136
(
4
),
2025
2038
.
15.
Ghofrani
,
S.
(
2015
). “
Matching pursuit decomposition for high-resolution direction of arrival
,”
Multidimens. Syst. Signal Process.
26
(
3
),
693
716
.
16.
Guo
,
H.
(
2011
). “
A simple algorithm for fitting a Gaussian function [DSP tips and tricks]
,”
IEEE Signal Process. Mag.
28
(
5
),
134
137
.
17.
Hamidia
,
M.
, and
Amrouche
,
A.
(
2017
). “
A new robust double-talk detector based on the Stockwell transform for acoustic echo cancellation
,”
Digital Signal Process.
60
,
99
112
.
18.
Hansson-Sandsten
,
M.
, and
Brynolfsson
,
J.
(
2015
). “
The scaled reassigned spectrogram with perfect localization for estimation of Gaussian functions
,”
IEEE Signal Process. Lett.
22
(
1
),
100
104
.
19.
He
,
Q.
, and
Ding
,
X.
(
2016
). “
Sparse representation based on local time-frequency template matching for bearing transient fault feature extraction
,”
J. Sound Vib.
370
,
424
443
.
20.
Holzmann
,
H.
, and
Vollmer
,
S.
(
2008
). “
A likelihood ratio test for bimodality in two-component mixtures with application to regional income distribution in the EU
,”
AStA Adv. Stat. Anal.
92
(
1
),
57
69
.
21.
Huang
,
N. E.
, and
Wu
,
Z.
(
2008
). “
A review on Hilbert-Huang transform: Method and its applications to geophysical studies
,”
Rev. Geophys.
46
(
2
),
RG2006
, .
22.
Kalbkhani
,
H.
, and
Shayesteh
,
M. G.
(
2017
). “
Stockwell transform for epileptic seizure detection from EEG signals
,”
Biomed. Signal Process. Control
38
,
108
118
.
23.
Kheirati Roonizi
,
E.
(
2013
). “
A new algorithm for fitting a Gaussian function riding on the polynomial background
,”
IEEE Signal Process. Lett.
20
(
11
),
1062
1065
.
24.
Kodera
,
K.
,
de Villedary
,
C.
, and
Gendrin
,
R.
(
1976
). “
A new method for the numerical analysis of nonstationary signals
,”
Phys. Earth Planetary Int.
12
,
142
150
.
25.
Lerga
,
J.
,
Sucic
,
V.
, and
Boashash
,
B.
(
2011
). “
An efficient algorithm for instantaneous frequency estimation of nonstationary multicomponent signals in low SNR
,”
EURASIP J. Adv. Signal Process.
2011
725189
.
26.
Liu
,
H.
,
Huang
,
W.
,
Wang
,
S.
, and
Zhu
,
Z.
(
2014
). “
Adaptive spectral kurtosis filtering based on morlet wavelet and its application for signal transients detection
,”
Signal Process.
96
(
Part A
),
118
124
.
27.
Madsen
,
P. T.
,
Lammers
,
M.
,
Wisniewska
,
D.
, and
Beedholm
,
K.
(
2013
). “
Nasal sound production in echolocating delphinids (Tursiops truncatus and Pseudorca crassidens) is dynamic, but unilateral: Clicking on the right side and whistling on the left side
,”
J. Exp. Biol.
216
(
21
),
4091
4102
.
28.
Olivo
,
J.
(
1994
). “
Automatic threshold selection using the wavelet transform
,”
CVGIP: Graph. Models Image Process.
56
(
3
),
205
218
.
29.
Pei
,
S.-C.
, and
Huang
,
S.-G.
(
2012
). “
STFT with adaptive window width based on the chirp rate
,”
IEEE Trans. Signal Process.
60
(
8
),
4065
4080
.
30.
Percival
,
D. B.
, and
Walden
,
A. T.
(
2000
).
Wavelet Methods for Time Series Analysis
(
Cambridge University Press
,
Cambridge, United Kingdom
).
31.
Pons-Llinares
,
J.
,
Riera-Guasp
,
M.
,
Antonino-Daviu
,
J. A.
, and
Habetler
,
T. G.
(
2016
). “
Pursuing optimal electric machines transient diagnosis: The adaptive slope transform
,”
Mech. Syst. Signal Process.
80
,
553
569
.
32.
Reinhold
,
I.
, and
Sandsten
,
M.
(
2017
). “
Optimal time-frequency distributions using a novel signal adaptive method for automatic component detection
,”
Signal Process.
133
,
250
259
.
33.
Sejdić
,
E.
,
Djurović
,
I.
, and
Jiang
,
J.
(
2009
). “
Time-frequency feature representation using energy concentration: An overview of recent advances
,”
Digital Signal Process.
19
,
153
183
.
34.
Sezan
,
M. I.
(
1990
). “
A peak detection algorithm and its application to histogram-based image data reduction
,”
Comp. Vis. Graph. Image Process.
49
,
36
51
.
35.
Sezgin
,
M.
, and
Sankur
,
B.
(
2004
). “
Survey over image thresholding techniques and quantitative performance evaluation
,”
J. Electron. Imag.
13
(
1
),
146
168
.
36.
Starkhammar
,
J.
,
Moore
,
P.
,
Talmadge
,
L.
, and
Houser
,
D.
(
2011
). “
Frequency-dependent variation in the two-dimensional beam pattern of an echolocating dolphin
,”
Biol. Lett.
7
(
6
),
836
839
.
37.
Wang
,
S.
,
Chen
,
X.
,
Wang
,
Y.
,
Cai
,
G.
,
Ding
,
B.
, and
Zhang
,
X.
(
2015
). “
Nonlinear squeezing time-frequency transform for weak signal detection
,”
Signal Process.
113
,
195
210
.
38.
Wang
,
S.
,
Huang
,
S.
,
Wang
,
Q.
,
Zhang
,
Y.
, and
Zhao
,
W.
(
2017
). “
Mode identification of broadband Lamb wave signal with squeezed wavelet transform
,”
Appl. Acoust.
125
,
91
101
.
39.
Wei
,
C.
,
Au
,
W. W. L.
,
Ketten
,
D. R.
,
Song
,
Z.
, and
Zhang
,
Y.
(
2017
). “
Biosonar signal propagation in the harbor porpoise's (Phocoena phocoena) head: The role of various structures in the formation of the vertical beam
,”
J. Acoust. Soc. Am.
141
(
6
),
4179
4187
.
You do not currently have access to this content.