Short duration and high intensity acoustic exposures can lead to temporary hearing loss and auditory nerve degeneration. This study investigates central auditory system function following such acute exposures after hearing loss recedes. Adult rats were exposed to 100 dB sound pressure level noise for 15 min. Auditory brainstem responses (ABRs) were recorded with click sounds to check hearing thresholds. Functional magnetic resonance imaging (fMRI) was performed with tonal stimulation at 12 and 20 kHz to investigate central auditory changes. Measurements were performed before exposure (0D), 7 days after (7D), and 14 days after (14D). ABRs show an ∼6 dB threshold shift shortly after exposure, but no significant threshold differences between 0D, 7D, and 14D. fMRI responses are observed in the lateral lemniscus (LL) and inferior colliculus (IC) of the midbrain. In the IC, responses to 12 kHz are 3.1 ± 0.3% (0D), 1.9 ± 0.3% (7D), and 2.9 ± 0.3% (14D) above the baseline magnetic resonance imaging signal. Responses to 20 kHz are 2.0 ± 0.2% (0D), 1.4 ± 0.2% (7D), and 2.1 ± 0.2% (14D). For both tones, responses at 7D are less than those at 0D (p < 0.01) and 14D (p < 0.05). In the LL, similar trends are observed. Acute exposure leads to functional changes in the auditory midbrain with timescale of weeks.

1.
Abdoli
,
S.
,
Ho
,
L. C.
,
Zhang
,
J. W.
,
Dong
,
C. M.
,
Lau
,
C.
, and
Wu
,
E. X.
(
2016
). “
Diffusion tensor imaging reveals changes in the adult rat brain following long-term and passive moderate acoustic exposure
,”
J. Acoust. Soc. Am.
140
,
4540
.
2.
Auerbach
,
B. D.
,
Rodrigues
,
P. V.
, and
Salvi
,
R. J.
(
2014
). “
Central gain control in tinnitus and hyperacusis
,”
Front. Neurol.
5
,
206
.
3.
Bach
,
J. P.
,
Lüpke
,
M.
,
Dziallas
,
P.
,
Wefstaedt
,
P.
,
Uppenkamp
,
S.
,
Seifert
,
H.
, and
Nolte
,
I.
(
2013
). “
Functional magnetic resonance imaging of the ascending stages of the auditory system in dogs
,”
BMC Vet Res.
9
,
210
.
4.
Basura
,
G. J.
,
Koehler
,
S. D.
, and
Shore
,
S. E.
(
2015
). “
Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus
,”
J. Neurophysiol.
114
,
3064
3075
.
5.
Baumann
,
S.
,
Griffiths
,
T. D.
,
Sun
,
L.
,
Petkov
,
C. I.
,
Thiele
,
A.
, and
Rees
,
A.
(
2011
). “
Orthogonal representation of sound dimensions in the primate midbrain
,”
Nat. Neurosci.
14
,
423
425
.
6.
Bilecen
,
D.
,
Seifritz
,
E.
,
Radu
,
E. W.
,
Schmid
,
N.
,
Wetzel
,
S.
,
Probst
,
R.
, and
Scheffler
,
K.
(
2000
). “
Cortical reorganization after acute unilateral hearing loss traced by fMRI
,”
Neurology
54
,
765
767
.
7.
Boumans
,
T.
,
Theunissen
,
F. E.
,
Poirier
,
C.
, and
Van Der Linden
,
A.
(
2007
). “
Neural representation of spectral and temporal features of song in the auditory forebrain of zebra finches as revealed by functional MRI
,”
Eur. J. Neurosci.
26
,
2613
2626
.
8.
Brown
,
T. A.
,
Joanisse
,
M. F.
,
Gati
,
J. S.
,
Hughes
,
S. M.
,
Nixon
,
P. L.
,
Menon
,
R. S.
, and
Lomber
,
S. G.
(
2013
). “
Characterization of the blood-oxygen level-dependent (BOLD) response in cat auditory cortex using high-field fMRI
,”
Neuroimage
64
,
458
465
.
9.
Butler
,
B. E.
,
Hall
,
A. J.
, and
Lomber
,
S. G.
(
2015
). “
High-field functional imaging of pitch processing in auditory cortex of the cat
,”
PLoS One
10
,
e0134362
.
10.
Chambers
,
A. R.
,
Resnik
,
J.
,
Yuan
,
Y.
,
Whitton
,
J. P.
,
Edge
,
A. S.
,
Liberman
,
M. C.
, and
Polley
,
D. B.
(
2016
). “
Central gain restores auditory processing following near-complete cochlear denervation
,”
Neuron
89
,
867
879
.
11.
Cheung
,
M. M.
,
Lau
,
C.
,
Zhou
,
I. Y.
,
Chan
,
K. C.
,
Cheng
,
J. S.
,
Zhang
,
J. W.
,
Ho
,
L. C.
, and
Wu
,
E. X.
(
2012a
). “
BOLD fMRI investigation of the rat auditory pathway and tonotopic organization
,”
Neuroimage
60
,
1205
1211
.
12.
Cheung
,
M. M.
,
Lau
,
C.
,
Zhou
,
I. Y.
,
Chan
,
K. C.
,
Zhang
,
J. W.
,
Fan
,
S. J.
, and
Wu
,
E. X.
(
2012b
). “
High fidelity tonotopic mapping using swept source functional magnetic resonance imaging
,”
Neuroimage
61
,
978
986
.
13.
Coomber
,
B.
,
Berger
,
J. I.
,
Kowalkowski
,
V. L.
,
Shackleton
,
T. M.
,
Palmer
,
A. R.
, and
Wallace
,
M. N.
(
2014
). “
Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig
,”
Eur. J. Neurosci.
40
,
2427
2441
.
14.
Davis
,
M. J.
, and
Ahroon
,
W. A.
(
1982
). “
Fluctuations in susceptibility to noise-induced temporary threshold shift as influenced by the menstrual cycle
,”
J. Aud. Res.
22
,
173
187
.
15.
Dong
,
S.
,
Mulders
,
W. H.
,
Rodger
,
J.
,
Woo
,
S.
, and
Robertson
,
D.
(
2010
). “
Acoustic trauma evokes hyperactivity and changes in gene expression in guinea-pig auditory brainstem
,”
Eur. J. Neurosci.
31
,
1616
1628
.
16.
Friederici
,
A. D.
,
Meyer
,
M.
, and
von Cramon
,
D. Y.
(
2000
). “
Auditory language comprehension: An event-related fMRI study on the processing of syntactic and lexical information
,”
Brain Lang.
75
,
289
300
.
17.
Furman
,
A. C.
,
Kujawa
,
S. G.
, and
Liberman
,
M. C.
(
2013
). “
Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates
,”
J. Neurophysiol.
110
,
577
586
.
18.
Gao
,
P. P.
,
Zhang
,
J. W.
,
Chan
,
R. W.
,
Leong
,
A. T.
, and
Wu
,
E. X.
(
2015a
). “
BOLD fMRI study of ultrahigh frequency encoding in the inferior colliculus
,”
Neuroimage
114
,
427
437
.
19.
Gao
,
P. P.
,
Zhang
,
J. W.
,
Cheng
,
J. S.
,
Zhou
,
I. Y.
, and
Wu
,
E. X.
(
2014
). “
The inferior colliculus is involved in deviant sound detection as revealed by BOLD fMRI
,”
Neuroimage
91
,
220
227
.
20.
Gao
,
P. P.
,
Zhang
,
J. W.
,
Fan
,
S. J.
,
Sanes
,
D. H.
, and
Wu
,
E. X.
(
2015b
). “
Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study
,”
Neuroimage
123
,
22
32
.
21.
Gerken
,
G. M.
,
Saunders
,
S. S.
, and
Paul
,
R. E.
(
1984
). “
Hypersensitivity to electrical stimulation of auditory nuclei follows hearing loss in cats
,”
Hear. Res.
13
,
249
259
.
22.
Gu
,
J. W.
,
Halpin
,
C. F.
,
Nam
,
E. C.
,
Levine
,
R. A.
, and
Melcher
,
J. R.
(
2010
). “
Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity
,”
J. Neurophysiol.
104
,
3361
3370
.
23.
Hall
,
A. J.
,
Butler
,
B. E.
, and
Lomber
,
S. G.
(
2016
). “
The cat's meow: A high-field fMRI assessment of cortical activity in response to vocalizations and complex auditory stimuli
,”
Neuroimage
127
,
44
57
.
24.
Hesse
,
L. L.
,
Bakay
,
W.
,
Ong
,
H. C.
,
Anderson
,
L.
,
Ashmore
,
J.
,
McAlpine
,
D.
,
Linden
,
J.
, and
Schaette
,
R.
(
2016
). “
Non-monotonic relation between noise exposure severity and neuronal hyperactivity in the auditory midbrain
,”
Front. Neurol.
7
,
1
13
.
25.
Hickox
,
A. E.
, and
Liberman
,
M. C.
(
2014
). “
Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus?
,”
J. Neurophysiol.
111
,
552
564
.
26.
Holland
,
S. K.
,
Karunanayaka
,
P.
,
Rajagopal
,
A.
, and
Smith
,
K.
(
2008
). “
fMRI evidence for central auditory processing of speech in deaf infants under sedation
,”
J. Acoust. Soc. Am.
123
,
3319
.
27.
Hyder
,
F.
,
Rothman
,
D. L.
, and
Shulman
,
R. G.
(
2002
). “
Total neuroenergetics support localized brain activity: Implications for the interpretation of fMRI
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
10771
10776
.
28.
Jancke
,
L.
,
Gaab
,
N.
,
Wustenberg
,
T.
,
Scheich
,
H.
, and
Heinze
,
H. J.
(
2001
). “
Short-term functional plasticity in the human auditory cortex: An fMRI study
,”
Brain Res. Cogn. Brain Res.
12
,
479
485
.
29.
Kayser
,
C.
,
Petkov
,
C. I.
,
Augath
,
M.
, and
Logothetis
,
N. K.
(
2007
). “
Functional imaging reveals visual modulation of specific fields in auditory cortex
,”
J. Neurosci.
27
,
1824
1835
.
30.
Koelsch
,
S.
,
Fritz
,
T.
,
Schulze
,
K.
,
Alsop
,
D.
, and
Schlaug
,
G.
(
2005
). “
Adults and children processing music: An fMRI study
,”
Neuroimage
25
,
1068
1076
.
31.
Kujawa
,
S. G.
, and
Liberman
,
M. C.
(
2009
). “
Adding insult to injury: Cochlear nerve degeneration after ‘temporary’ noise-induced hearing loss
,”
J. Neurosci.
29
,
14077
14085
.
32.
Kujawa
,
S. G.
, and
Liberman
,
M. C.
(
2015
). “
Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss
,”
Hear. Res.
330
,
191
199
.
33.
Lanting
,
C. P.
,
De Kleine
,
E.
,
Bartels
,
H.
, and
Van Dijk
,
P.
(
2008
). “
Functional imaging of unilateral tinnitus using fMRI
,”
Acta. Otolaryngol.
128
,
415
421
.
34.
Lau
,
C.
,
Pienkowski
,
M.
,
Zhang
,
J. W.
,
McPherson
,
B.
, and
Wu
,
E. X.
(
2015a
). “
Chronic exposure to broadband noise at moderate sound pressure levels spatially shifts tone-evoked responses in the rat auditory midbrain
,”
Neuroimage
122
,
44
51
.
35.
Lau
,
C.
,
Zhang
,
J. W.
,
Cheng
,
J. S.
,
Zhou
,
I. Y.
,
Cheung
,
M. M.
, and
Wu
,
E. X.
(
2013
). “
Noninvasive fMRI investigation of interaural level difference processing in the rat auditory subcortex
,”
PLoS One
8
,
e70706
.
36.
Lau
,
C.
,
Zhang
,
J. W.
,
McPherson
,
B.
,
Pienkowski
,
M.
, and
Wu
,
E. X.
(
2015b
). “
Long-term, passive exposure to non-traumatic acoustic noise induces neural adaptation in the adult rat medial geniculate body and auditory cortex
,”
Neuroimage
107
,
1
9
.
37.
Liberman
,
M. C.
(
2015
). “
Hidden hearing loss
,”
Sci. Am.
313
,
48
53
.
38.
Lin
,
H. W.
,
Furman
,
A. C.
,
Kujawa
,
S. G.
, and
Liberman
,
M. C.
(
2011
). “
Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift
,”
J. Assoc. Res. Otolaryngol.
12
,
605
616
.
39.
Liu
,
L.
,
Wang
,
H.
,
Shi
,
L.
,
Almuklass
,
A.
,
He
,
T.
,
Aiken
,
S.
,
Bance
,
M.
,
Yin
,
S.
, and
Wang
,
J.
(
2012
). “
Silent damage of noise on cochlear afferent innervation in guinea pigs and the impact on temporal processing
,”
PLoS One
7
,
e49550
.
40.
Logothetis
,
N. K.
,
Pauls
,
J.
,
Augath
,
M.
,
Trinath
,
T.
, and
Oeltermann
,
A.
(
2001
). “
Neurophysiological investigation of the basis of the fMRI signal
,”
Nature
412
,
150
157
.
41.
Logothetis
,
N. K.
, and
Wandell
,
B. A.
(
2004
). “
Interpreting the BOLD signal
,”
Annu. Rev. Physiol.
66
,
735
769
.
42.
Ma
,
W. L.
,
Hidaka
,
H.
, and
May
,
B. J.
(
2006
). “
Spontaneous activity in the inferior colliculus of CBA/J mice after manipulations that induce tinnitus
,”
Hear. Res.
212
,
9
21
.
43.
Maeder
,
P. P.
,
Meuli
,
R. A.
,
Adriani
,
M.
,
Bellmann
,
A.
,
Fornari
,
E.
,
Thiran
,
J. P.
,
Pittet
,
A.
, and
Clarke
,
S.
(
2001
). “
Distinct pathways involved in sound recognition and localization: A human fMRI study
,”
Neuroimage
14
,
802
816
.
44.
Manzoor
,
N. F.
,
Licari
,
F. G.
,
Klapchar
,
M.
,
Elkin
,
R. L.
,
Gao
,
Y.
,
Chen
,
G.
, and
Kaltenbach
,
J. A.
(
2012
). “
Noise-induced hyperactivity in the inferior colliculus: Its relationship with hyperactivity in the dorsal cochlear nucleus
,”
J. Neurophysiol.
108
,
976
988
.
45.
McFadden
,
S. L.
,
Henselman
,
L. W.
, and
Zheng
,
X. Y.
(
1999
). “
Sex differences in auditory sensitivity of chinchillas before and after exposure to impulse noise
,”
Ear Hear.
20
,
164
174
.
46.
Mehraei
,
G.
,
Gallardo
,
A. P.
,
Shinn-Cunningham
,
B. G.
, and
Dau
,
T.
(
2017
). “
Auditory brainstem response latency in forward masking, a marker of sensory deficits in listeners with normal hearing thresholds
,”
Hear. Res.
346
,
34
44
.
47.
Meltser
,
I.
,
Tahera
,
Y.
,
Simpson
,
E.
,
Hultcrantz
,
M.
,
Charitidi
,
K.
,
Gustafsson
,
J. A.
, and
Canlon
,
B.
(
2008
). “
Estrogen receptor beta protects against acoustic trauma in mice
,”
J. Clin. Invest.
118
,
1563
1570
.
48.
Mohrle
,
D.
,
Ni
,
K.
,
Varakina
,
K.
,
Bing
,
D.
,
Lee
,
S. C.
,
Zimmermann
,
U.
,
Knipper
,
M.
, and
Ruttiger
,
L.
(
2016
). “
Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain
,”
Neurobiol. Aging
44
,
173
184
.
49.
Mulders
,
W. H.
, and
Robertson
,
D.
(
2009
). “
Hyperactivity in the auditory midbrain after acoustic trauma: Dependence on cochlear activity
,”
Neuroscience
164
,
733
746
.
50.
Mulders
,
W. H.
, and
Robertson
,
D.
(
2011
). “
Progressive centralization of midbrain hyperactivity after acoustic trauma
,”
Neuroscience
192
,
753
760
.
51.
Mulders
,
W. H.
,
Seluakumaran
,
K.
, and
Robertson
,
D.
(
2010
). “
Efferent pathways modulate hyperactivity in inferior colliculus
,”
J. Neurosci.
30
,
9578
9587
.
52.
National Institute on Deafness and Other Communication Disorders (NIDCD)
(
2014
). Noise-Induced Hearing Loss (
Bethesda, MD
).
53.
National Institute for Occupational Safety and Health (NIOSH)
(
1998
). Criteria for a Recommended Standard—Occupational Noise Exposure (Washington, DC).
54.
Ogawa
,
S.
,
Lee
,
T. M.
,
Kay
,
A. R.
, and
Tank
,
D. W.
(
1990
). “
Brain magnetic-resonance-imaging with contrast dependent on blood oxygenation
,”
Proc. Natl. Acad. Sci. U.S.A.
87
,
9868
9872
.
55.
Ortiz-Rios
,
M.
,
Azevedo
,
F. A. C.
,
Kusmierek
,
P.
,
Balla
,
D. Z.
,
Munk
,
M. H.
,
Keliris
,
G. A.
,
Logothetis
,
N. K.
, and
Rauschecker
,
J. P.
(
2017
). “
Widespread and opponent fMRI signals represent sound location in macaque auditory cortex
,”
Neuron
93
,
971
983
.
56.
Paxinos
,
G.
, and
Watson
,
C.
(
2005
).
The Rat Brain in Stereotaxic Coordinates
(
Elsevier Academic
,
Cambridge, MA
).
57.
Plack
,
C. J.
,
Barker
,
D.
, and
Prendergast
,
G.
(
2014
). “
Perceptual consequences of ‘hidden’ hearing loss
,”
Trends Hear.
18
,
1
11
.
58.
Popelar
,
J.
,
Syka
,
J.
, and
Berndt
,
H.
(
1987
). “
Effect of noise on auditory evoked responses in awake guinea pigs
,”
Hear. Res.
26
,
239
247
.
59.
Robertson
,
D.
,
Bester
,
C.
,
Vogler
,
D.
, and
Mulders
,
W. H.
(
2013
). “
Spontaneous hyperactivity in the auditory midbrain: Relationship to afferent input
,”
Hear. Res.
295
,
124
129
.
60.
Ruttiger
,
L.
,
Singer
,
W.
,
Panford-Walsh
,
R.
,
Matsumoto
,
M.
,
Lee
,
S. C.
,
Zuccotti
,
A.
,
Zimmermann
,
U.
,
Jaumann
,
M.
,
Rohbock
,
K.
,
Xiong
,
H.
, and
Knipper
,
M.
(
2013
). “
The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats
,”
PLoS One
8
,
e57247
.
61.
Salvi
,
R. J.
,
Saunders
,
S. S.
,
Gratton
,
M. A.
,
Arehole
,
S.
, and
Powers
,
N.
(
1990
). “
Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma
,”
Hear. Res.
50
,
245
257
.
62.
Schmithorst
,
V. J.
,
Holland
,
S. K.
,
Ret
,
J.
,
Duggins
,
A.
,
Arjmand
,
E.
, and
Greinwald
,
J.
(
2005
). “
Cortical reorganization in children with unilateral sensorineural hearing loss
,”
Neuroreport
16
,
463
467
.
63.
Shi
,
L.
,
Chang
,
Y.
,
Li
,
X.
,
Aiken
,
S. J.
,
Liu
,
L.
, and
Wang
,
J.
(
2016
). “
Coding deficits in noise-induced hidden hearing loss may stem from incomplete repair of ribbon synapses in the cochlea
,”
Front. Neurosci.
10
,
231
.
64.
Smith
,
A. J.
,
Blumenfeld
,
H.
,
Behar
,
K. L.
,
Rothman
,
D. L.
,
Shulman
,
R. G.
, and
Hyder
,
F.
(
2002
). “
Cerebral energetics and spiking frequency: The neurophysiological basis of fMRI
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
10765
10770
.
65.
Smits
,
M.
,
Kovacs
,
S.
,
de Ridder
,
D.
,
Peeters
,
R. R.
,
van Hecke
,
P.
, and
Sunaert
,
S.
(
2007
). “
Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus
,”
Neuroradiology
49
,
669
679
.
66.
Svedbrant
,
J.
,
Bark
,
R.
,
Hultcrantz
,
M.
, and
Hederstierna
,
C.
(
2015
). “
Hearing decline in menopausal women—A 10-year follow-up
,”
Acta Otolaryngol.
135
,
807
813
.
67.
Syka
,
J.
,
Rybalko
,
N.
, and
Popelar
,
J.
(
1994
). “
Enhancement of the auditory cortex evoked responses in awake guinea pigs after noise exposure
,”
Hear. Res.
78
,
158
168
.
68.
Tanji
,
K.
,
Leopold
,
D. A.
,
Ye
,
F. Q.
,
Zhu
,
C.
,
Malloy
,
M.
,
Saunders
,
R. C.
, and
Mishkin
,
M.
(
2010
). “
Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey
,”
Neuroimage
49
,
150
157
.
69.
Van Meir
,
V.
,
Boumans
,
T.
,
De Groof
,
G.
,
Van Audekerke
,
J.
,
Smolders
,
A.
,
Scheunders
,
P.
,
Sijbers
,
J.
,
Verhoye
,
M.
,
Balthazart
,
J.
, and
Van der Linden
,
A.
(
2005
). “
Spatiotemporal properties of the BOLD response in the songbirds' auditory circuit during a variety of listening tasks
,”
Neuroimage
25
,
1242
1255
.
70.
Voss
,
H. U.
,
Tabelow
,
K.
,
Polzehl
,
J.
,
Tchernichovski
,
O.
,
Maul
,
K. K.
,
Salgado-Commissariat
,
D.
,
Ballon
,
D.
, and
Helekar
,
S. A.
(
2007
). “
Functional MRI of the zebra finch brain during song stimulation suggests a lateralized response topography
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
10667
10672
.
71.
Ward
,
W. D.
(
1966
). “
Temporary threshold shift in males and females
,”
J. Acoust. Soc. Am.
40
,
478
485
.
72.
Wong
,
E.
,
Yang
,
B.
,
Du
,
L.
,
Ho
,
W. H.
,
Lau
,
C.
,
Ke
,
Y.
,
Chan
,
Y. S.
,
Yung
,
W. H.
, and
Wu
,
E. X.
(
2017
). “
The multi-level impact of chronic intermittent hypoxia on central auditory processing
,”
Neuroimage
156
,
232
239
.
73.
Wu
,
C. M.
, and
Lin
,
Y. S.
(
2008
). “
Neural correlates on Chinese speech production: An fMRI study
,”
J. Acoust. Soc. Am.
125
,
3075
.
74.
Wu
,
C.
,
Martel
,
D. T.
, and
Shore
,
S. E.
(
2016
). “
Increased synchrony and bursting of dorsal cochlear nucleus fusiform cells correlate with tinnitus
,”
J. Neurosci.
36
,
2068
2073
.
75.
Zhang
,
J. W.
,
Lau
,
C.
,
Cheng
,
J. S.
,
Xing
,
K. K.
,
Zhou
,
I. Y.
,
Cheung
,
M. M.
, and
Wu
,
E. X.
(
2013
). “
Functional magnetic resonance imaging of sound pressure level encoding in the rat central auditory system
,”
Neuroimage
65
,
119
126
.

Supplementary Material

You do not currently have access to this content.