A hybrid method that combines a noise engineering method and the 2.5D boundary element method approximates outdoor sound propagation in large domains with complex objects more accurately than noise engineering methods alone and more efficiently than reference methods alone. Noise engineering methods (e.g., ISO 9613-2 or CNOSSOS-EU) efficiently approximate sound levels from roads, railways, and industrial sources in cities for simple, box-shaped geometries by first finding the propagation paths between the source and receiver, then applying attenuations (e.g., geometrical divergence and atmospheric absorption) to each path, and finally incoherently summing all of the path contributions. Standard engineering methods cannot model more complicated geometries but introducing an additional attenuation term quantifies the influence of complex objects. Calculating this extra attenuation term requires reference calculations but performing reference computations for each path is too computationally expensive. Thus, the extra attenuation term is linearly interpolated from a data table containing the corrections for many source/receiver positions and frequencies. The 2.5D boundary element method produces the levels for the real and simplified geometries and subtracting them yields a table of corrections. For a T-shaped barrier with two buildings, this approach reduces the mean error by approximately 2 dBA compared to a standard engineering method.

1.
L.
Fritschi
,
A. L.
Brown
,
R.
Kim
,
D.
Schwela
, and
S.
Kephalopoulos
, “
Burden of disease from environmental noise: Quantification of healthy life years lost in Europe
,”
World Health Organization Regional Office for Europe
(
2011
), available at www.euro.who.int/en/publications/abstracts/burden-of-disease-from-environmental-noise.-quantification-of-healthy-life-years-lost-in-europe.
2.
Directive 2002/49/EC of the European parliament and the council of 25 June 2002 relating to the assessment and management of environmental noise
,” (
2002
), available at eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32002L0049.
3.
S.
Kephalopoulos
,
M.
Paviotti
, and
F.
Anfosso-Lédée
, “
Common noise assessment methods in Europe (CNOSSOS-EU)
,”
European Commission Joint Research Centre
(
2012
).
4.
L. L.
Thompson
, “
A review of finite-element methods for time-harmonic acoustics
,”
J. Acoust. Soc. Am.
119
(
3
),
1315
1330
(
2006
).
5.
I.
Harari
, “
A survey of finite element methods for time-harmonic acoustics
,”
Comput. Methods Appl. Mech. Eng.
195
(
13–16
),
1594
1607
(
2006
).
6.
D. C.
Hothersall
,
S. N.
Chandler-Wilde
, and
M. N.
Hajmirzae
, “
Efficiency of single noise barriers
,”
J. Sound Vib.
146
(
2
),
303
322
(
1991
).
7.
M.
Baulac
,
J.
Defrance
,
P.
Jean
, and
F.
Minard
, “
Efficiency of noise protections in urban areas: Predictions and scale model measurements
,”
Acta Acust. united Acust.
92
(
4
),
530
539
(
2006
).
8.
T.
Van Renterghem
, “
Efficient outdoor sound propagation modeling with the finite-difference time-domain (FDTD) method: A review
,”
Int. J. Aeroacoust.
13
(
5–6
),
385
404
(
2014
).
9.
R.
Mehra
,
N.
Raghuvanshi
,
A.
Chandak
,
D. G.
Albert
,
D. K.
Wilson
, and
D.
Manocha
, “
Acoustic pulse propagation in an urban environment using a three-dimensional numerical simulation
,”
J. Acoust. Soc. Am.
135
(
6
),
3231
3242
(
2014
).
10.
P.
Jean
, “
A variational approach for the study of outdoor sound propagation and application to railway noise
,”
J. Sound Vib.
212
(
2
),
275
294
(
1998
).
11.
T.
Ishizuka
and
K.
Fujiwara
, “
Performance of noise barriers with various edge shapes and acoustical conditions
,”
Appl. Acoust.
65
(
2
),
125
141
(
2004
).
12.
M.
Baulac
,
J.
Defrance
, and
P.
Jean
, “
Optimisation with genetic algorithm of the acoustic performance of T-shaped noise barriers with a reactive top surface
,”
Appl. Acoust.
69
(
4
),
332
342
(
2008
).
13.
A.
Jolibois
,
D.
Duhamel
,
V. W.
Sparrow
,
J.
Defrance
, and
P.
Jean
, “
Sensitivity-based shape optimization of a rigid tramway low-height noise barrier
,” in
Proceedings of Internoise 2013
, Innsbruck, Austria (September 15–18, 2013), pp.
3492
3501
.
14.
ISO 9613-2:1996
:
Acoustics—Attenuation of Sound During Propagation Outdoors—Part 2: General Method of Calculation
(
International Organization for Standardization
,
Geneva, Switzerland
,
1996
).
15.
D.
van Maercke
and
J.
Defrance
, “
Development of an analytical model for outdoor sound propagation within the Harmonoise project
,”
Acta Acust. united Acust.
93
(
2
),
201
212
(
2007
).
16.
E.
Salomons
,
D.
van Maercke
,
J.
Defrance
, and
F.
de Roo
, “
The Harmonoise sound propagation model
,”
Acta Acust. united Acust.
97
(
1
),
62
74
(
2011
).
17.
D. P.
Hewett
, “
High frequency sound propagation in a network of interconnecting streets
,”
J. Sound Vib.
331
(
25
),
5537
5561
(
2012
).
18.
A.
Muradali
and
K. R.
Fyfe
, “
Accurate barrier modeling in the presence of atmospheric effects
,”
Appl. Acoust.
56
(
3
),
157
182
(
1999
).
19.
A.
Farina
, “
Validation of the pyramid tracing algorithm for sound propagation outdoors: Comparison with experimental measurements and with the ISO-DIS 9613 standards
,”
Adv. Eng. Softw.
31
(
4
),
241
250
(
2000
).
20.
H.
Wang
,
Z.
Yu
, and
M.
Cai
, “
The 3D attenuation calculation of traffic noise among building groups by using beam tracing method
,”
Proc. Soc. Behav. Sci.
96
,
1929
1937
(
2013
).
21.
D.
Lee
,
A. D.
Pierce
, and
E.
Shang
, “
Parabolic equation development in the twentieth century
,”
J. Comput. Acoust.
8
(
4
),
527
637
(
2000
).
22.
T.
van Renterghem
,
D.
Botteldooren
, and
P.
Lercher
, “
Comparison of measurements and predictions of sound propagation in a valley-slope configuration in an inhomogeneous atmosphere
,”
J. Acoust. Soc. Am.
121
(
5
),
2522
2533
(
2007
).
23.
F.
Aballéa
and
J.
Defrance
, “
Single and multiple reflections in plane obstacle using the parabolic equation method with a complementary Kirchhoff approximation
,”
Acta Acust. united Acust.
93
(
1
),
22
30
(
2007
).
24.
T.
van Renterghem
,
E. M.
Salomons
, and
D.
Botteldooren
, “
Efficient FDTD-PE Model for sound propagation in situations with complex obstacles and wind profiles
,”
Acta Acust. united Acust.
91
(
4
),
671
679
(
2005
).
25.
J.
Defrance
,
E.
Salomons
,
I.
Noordhoek
,
D.
Heimann
,
B.
Plovsing
,
G.
Watts
,
H.
Jonasson
,
X.
Zhang
,
E.
Premat
,
I.
Schmich
,
F.
Aballea
,
M.
Baulac
, and
F.
de Roo
, “
Outdoor sound propagation reference model developed in the European Harmonoise project
,”
Acta Acust. united Acust.
93
(
2
),
213
227
(
2007
).
26.
P.
Jean
, “
Coupling integral and geometrical representations for vibro-acoustical problems
,”
J. Sound Vib.
224
(
3
),
475
487
(
1999
).
27.
P.
Jean
, “
Coupling geometrical and integral methods for indoor and outdoor sound propagation—Validation examples
,”
Acta Acust. united Acust.
87
(
2
),
236
246
(
2001
).
28.
S.
Hampel
,
S.
Langer
, and
A.
Cisilino
, “
Coupling boundary elements to a raytracing procedure
,”
Int. J. Numer. Methods Eng.
73
(
3
),
427
445
(
2008
).
29.
H.
Yeh
,
R.
Mehra
,
Z.
Ren
,
L.
Antani
,
D.
Manocha
, and
M.
Lin
, “
Wave-ray coupling for interactive sound propagation in large complex scenes
,”
ACM Trans. Graph.
32
(
6
),
165
(
2013
).
30.
J.
Defrance
and
P.
Jean
, “
Integration of the efficiency of noise barrier caps in a 3D ray tracing method. Case of a T-shaped diffracting device
,”
Appl. Acoust.
64
(
8
),
765
780
(
2003
).
31.
C. H.
Kasess
,
W.
Kreuzer
, and
H.
Waubke
, “
Deriving correction functions to model the efficiency of noise barriers with complex shapes using boundary element simulations
,”
Appl. Acoust.
102
,
88
99
(
2016
).
32.
B.
Plovsing
, “
Nord2000. Comprehensive outdoor sound propagation model. Part 1: Propagation in an atmosphere without significant refraction
,”
Danish Electronics, Light
, and Acoustics (
2006
), available at dk.madebydelta.com/viden/publikationer/.
33.
D.
van Maercke
,
T.
Leissing
, and
J.
Maillard
, “
Task 6.2: Evaluation of innovative and combined mitigations
,” Holistic and sustainable abatement of noise by optimized combinations of natural and artificial means (HOSANNA,
2013
), available at www.greener-cities.eu/.
34.
D.
Duhamel
, “
Efficient calculation of the three-dimensional sound pressure field around a noise barrier
,”
J. Sound Vib.
197
(
5
),
547
571
(
1996
).
35.
P.
Jean
,
J.
Defrance
, and
Y.
Gabillet
, “
The importance of source type on the assessment of noise barriers
,”
J. Sound Vib.
226
(
2
),
201
216
(
1999
).
36.
J.
Defrance
,
P.
Jean
,
F.
Koussa
,
A.
Khan
,
K.
Horoshenkov
,
H.
Benkreira
,
T.
van Renterghem
,
J.
Kang
,
J.
Smyrnowa
, and
J.
Forssén
, “
Task 2.3: Application to innovations
,” Holistic and sustainable abatement of noise by optimized combinations of natural and artificial means (HOSANNA,
2013
), available at www.greener-cities.eu/.
37.
M.
Delany
and
E.
Bazley
, “
Acoustical properties of fibrous absorbent materials
,”
Appl. Acoust.
3
(
2
),
105
116
(
1970
).
38.
T.
Sakuma
and
Y.
Yasuda
, “
Fast multipole boundary element method for large-scale steady-state sound field analysis. Part I: Setup and validation
,”
Acta Acust. united Acust.
88
(
4
),
513
525
(
2002
).
39.
X.
Vuylsteke
, “
Development of a reference method based on the fast multipole boundary element method for sound propagation problems in urban environments: Formalism, optimizations & applications
,” Ph.D. dissertation, Université Paris, Paris,
2014
.
40.
N. A.
Gumerov
and
R.
Duraiswami
,
Fast Multipole Methods for the Helmholtz Equation in Three Dimensions
(
Elsevier
,
Amsterdam
,
2004
), pp.
1
520
.
You do not currently have access to this content.