Materials that simulate the ultrasonic properties of tissues are used widely for clinical and research purposes. However, relatively few materials are known to simulate the ultrasonic properties of cancellous bone. The goal of the present study was to investigate the suitability of using a polymer, open-cell rigid foam (OCRF) produced by Sawbones®. Measurements were performed on OCRF specimens with four different densities. Ultrasonic speed of sound and normalized broadband ultrasonic attenuation were measured with a 0.5 MHz transducer. Three backscatter parameters were measured with a 5 MHz transducer: apparent integrated backscatter, frequency slope of apparent backscatter, and normalized mean of the backscatter difference. X-ray micro-computed tomography was used to measure the microstructural characteristics of the OCRF specimens. The trabecular thickness and relative bone volume of the OCRF specimens were similar to those of human cancellous bone, but the trabecular separation was greater. In most cases, the ultrasonic properties of the OCRF specimens were similar to values reported in the literature for cancellous bone, including dependence on density. In addition, the OCRF specimens exhibited an ultrasonic anisotropy similar to that reported for cancellous bone.

1.
B. L.
Riggs
and
L. J.
Melton
 III
, “
The worldwide problem of osteoporosis: Insights afforded by epidemiology
,”
Bone
17
,
505S
511S
(
1995
).
2.
K. A.
Wear
, “
Ultrasonic scattering from cancellous bone: A review
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
55
,
1432
1441
(
2008
).
3.
A. J.
Clarke
,
J. A.
Evans
,
J. G.
Truscott
,
R.
Milner
, and
M. A.
Smith
, “
A phantom for quantitative ultrasound of trabecular bone
,”
Phys. Med. Biol.
39
,
1677
1687
(
1994
).
4.
R.
Strelitzki
,
J. A.
Evans
, and
A. J.
Clarke
, “
The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material
,”
Osteoporos. Int.
7
,
370
375
(
1997
).
5.
C. M.
Langton
,
M. A.
Whitehead
,
D. K.
Langton
, and
G.
Langley
, “
Development of a cancellous bone structural model by stereolithography for ultrasound characterisation of the calcaneus
,”
Med. Eng. Phys.
19
,
599
604
(
1997
).
6.
K. A.
Wear
, “
Measurement of dependence of backscatter coefficient from cylinders on frequency and diameter using focused transducers–with applications in trabecular bone
,”
J. Acoust. Soc. Am.
115
,
66
72
(
2004
).
7.
K. A.
Wear
, “
The dependencies of phase velocity and dispersion on volume fraction in cancellous-bone-mimicking phantoms
,”
J. Acoust. Soc. Am.
125
,
1197
1201
(
2009
).
8.
K. A.
Wear
and
G. R.
Harris
, “
Frequency dependence of backscatter from thin, oblique, finite-length cylinders measured with a focused transducer-with applications in cancellous bone
,”
J. Acoust. Soc. Am.
124
,
3309
3314
(
2008
).
9.
K. A.
Wear
, “
Mechanisms for attenuation in cancellous-bone-mimicking phantoms
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
55
,
2418
2425
(
2008
).
10.
K. I.
Lee
and
M. J.
Choi
, “
Phase velocity and normalized broadband ultrasonic attenuation in Polyacetal cuboid bone-mimicking phantoms
,”
J. Acoust. Soc. Am.
121
,
EL263
EL269
(
2007
).
11.
Q.
Ji
,
L. H.
Le
,
L. J.
Filipow
, and
S. A.
Jackson
, “
Ultrasonic wave propagation in water-saturated cellular aluminum foams
,”
Ultrasonics
36
,
759
765
(
1998
).
12.
L. H.
Le
,
C.
Zhang
,
D.
Ta
, and
E.
Lou
, “
Measurement of tortuosity in aluminum foams using airborne ultrasound
,”
Ultrasonics
50
,
1
5
(
2010
).
13.
C.
Zhang
,
L. H.
Le
,
R.
Zheng
,
D.
Ta
, and
E.
Lou
, “
Measurements of ultrasonic phase velocities and attenuation of slow waves in cellular aluminum foams as cancellous bone-mimicking phantoms
,”
J. Acoust. Soc. Am.
129
,
3317
3326
(
2011
).
14.
K. I.
Lee
, “
Relationships of linear and nonlinear ultrasound parameters with porosity and trabecular spacing in trabecular-bone-mimicking phantoms
,”
J. Acoust. Soc. Am.
140
,
EL528
EL533
(
2016
).
15.
K. I.
Lee
, “
Dependences of ultrasonic properties on frequency and trabecular spacing in trabecular-bone-mimicking phantoms
,”
J. Acoust. Soc. Am.
137
,
EL194
EL199
(
2015
).
16.
K. I.
Lee
, “
Dependences of quantitative ultrasound parameters on frequency and porosity in water-saturated nickel foams
,”
J. Acoust. Soc. Am.
135
,
EL61
EL67
(
2014
).
17.
A.
Wydra
and
R. G.
Maev
, “
A novel composite material specifically developed for ultrasound bone phantoms: Cortical, trabecular and skull
,”
Phys. Med. Biol.
58
,
N303
N319
(
2013
).
18.
F.
Meziere
,
P.
Juskova
,
J.
Woittequand
,
M.
Muller
,
E.
Bossy
,
R.
Boistel
,
L.
Malaquin
, and
A.
Derode
, “
Experimental observation of ultrasound fast and slow waves through three-dimensional printed trabecular bone phantoms
,”
J. Acoust. Soc. Am.
139
,
EL13
EL18
(
2016
).
19.
C. J.
Hernandez
, “
Cancellous bone
,” in
Handbook of Biomaterial Properties
, edited by
W.
Murphy
,
J.
Black
, and
G.
Hastings
(
Springer
,
New York
,
2016
), pp.
15
21
.
20.
T. M.
Keavney
,
E. F.
Morgan
, and
O. C.
Yeh
, “
Bone mechanics
,” in
Biomedical Engineering and Design Handbook
, edited by
M.
Kutz
(
McGraw-Hill
,
New York
,
2009
), pp.
221
244
.
21.
C. M.
Langton
and
C. F.
Njeh
, “
The measurement of broadband ultrasonic attenuation in cancellous bone—A review of the science and technology
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
55
,
1546
1554
(
2008
).
22.
M. A.
Hakulinen
,
J. S.
Day
,
J.
Toyras
,
M.
Timonen
,
H.
Kroger
,
H.
Weinans
,
I.
Kiviranta
, and
J. S.
Jurvelin
, “
Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2–6.7 MHz frequency range
,”
Phys. Med. Biol.
50
,
1629
1642
(
2005
).
23.
M. A.
Hakulinen
,
J. S.
Day
,
J.
Toyras
,
H.
Weinans
, and
J. S.
Jurvelin
, “
Ultrasonic characterization of human trabecular bone microstructure
,”
Phys. Med. Biol.
51
,
1633
1648
(
2006
).
24.
J. P.
Karjalainen
,
O.
Riekkinen
,
J.
Toyras
,
M.
Hakulinen
,
H.
Kroger
,
T.
Rikkonen
,
K.
Salovaara
, and
J. S.
Jurvelin
, “
Multi-site bone ultrasound measurements in elderly women with and without previous hip fractures
,”
Osteoporos. Int.
23
,
1287
1295
(
2012
).
25.
J. P.
Karjalainen
,
J.
Toyras
,
O.
Riekkinen
,
M.
Hakulinen
, and
J. S.
Jurvelin
, “
Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone
,”
Ultrasound Med. Biol.
35
,
1376
1384
(
2009
).
26.
M. K.
Malo
,
J.
Toyras
,
J. P.
Karjalainen
,
H.
Isaksson
,
O.
Riekkinen
, and
J. S.
Jurvelin
, “
Ultrasound backscatter measurements of intact human proximal femurs—Relationships of ultrasound parameters with tissue structure and mineral density
,”
Bone
64
,
240
245
(
2014
).
27.
O.
Riekkinen
,
M. A.
Hakulinen
,
M.
Timonen
,
J.
Toyras
, and
J. S.
Jurvelin
, “
Influence of overlying soft tissues on trabecular bone acoustic measurement at various ultrasound frequencies
,”
Ultrasound Med. Biol.
32
,
1073
1083
(
2006
).
28.
O.
Riekkinen
,
M. A.
Hakulinen
,
J.
Toyras
, and
J. S.
Jurvelin
, “
Dual-frequency ultrasound—New pulse-echo technique for bone densitometry
,”
Ultrasound Med. Biol.
34
,
1703
1708
(
2008
).
29.
B. K.
Hoffmeister
, “
Frequency dependence of apparent ultrasonic backscatter from human cancellous bone
,”
Phys. Med. Biol.
56
,
667
683
(
2011
).
30.
B. K.
Hoffmeister
,
A. P.
Holt
, and
S. C.
Kaste
, “
Effect of the cortex on ultrasonic backscatter measurements of cancellous bone
,”
Phys. Med. Biol.
56
,
6243
6255
(
2011
).
31.
B. K.
Hoffmeister
,
D. P.
Johnson
,
J. A.
Janeski
,
D. A.
Keedy
,
B. W.
Steinert
,
A. M.
Viano
, and
S. C.
Kaste
, “
Ultrasonic characterization of human cancellous bone in vitro using three different apparent backscatter parameters in the frequency range 0.6–15.0 MHz
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
55
,
1442
1452
(
2008
).
32.
B. K.
Hoffmeister
,
C. I.
Jones
 III
,
G. J.
Caldwell
, and
S. C.
Kaste
, “
Ultrasonic characterization of cancellous bone using apparent integrated backscatter
,”
Phys. Med. Biol.
51
,
2715
2727
(
2006
).
33.
B. K.
Hoffmeister
,
J. A.
McPherson
,
M. R.
Smathers
,
P. L.
Spinolo
, and
M. E.
Sellers
, “
Ultrasonic backscatter from cancellous bone: The apparent backscatter transfer function
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
62
,
2115
2125
(
2015
).
34.
B. K.
Hoffmeister
,
M. R.
Smathers
,
C. J.
Miller
,
J. A.
McPherson
,
C. R.
Thurston
,
P. L.
Spinolo
, and
S. R.
Lee
, “
Backscatter-difference measurements of cancellous bone using an ultrasonic imaging system
,”
Ultrason. Imaging
38
,
285
297
(
2016
).
35.
B. K.
Hoffmeister
,
P. L.
Spinolo
,
M. E.
Sellers
,
P. L.
Marshall
,
A. M.
Viano
, and
S. R.
Lee
, “
Effect of intervening tissues on ultrasonic backscatter measurements of bone: An in vitro study
,”
J. Acoust. Soc. Am.
138
,
2449
2457
(
2015
).
36.
B. K.
Hoffmeister
,
A. R.
Wilson
,
M. J.
Gilbert
, and
M. E.
Sellers
, “
A backscatter difference technique for ultrasonic bone assessment
,”
J. Acoust. Soc. Am.
132
,
4069
4076
(
2012
).
37.
Y. Q.
Jiang
,
C. C.
Liu
,
R. Y.
Li
,
W. P.
Wang
,
H.
Ding
,
Q.
Qi
,
D.
Ta
,
J.
Dong
, and
W. Q.
Wang
, “
Analysis of apparent integrated backscatter coefficient and backscattered spectral centroid shift in calcaneus in vivo for the ultrasonic evaluation of osteoporosis
,”
Ultrasound Med. Biol.
40
,
1307
1317
(
2014
).
38.
C.
Liu
,
T.
Tang
,
F.
Xu
,
D.
Ta
,
M.
Matsukawa
,
B.
Hu
, and
W.
Wang
, “
Signal of interest selection standard for ultrasonic backscatter in cancellous bone evaluation
,”
Ultrasound Med. Biol.
41
,
2714
2721
(
2015
).
39.
T.
Tang
,
C.
Liu
,
F.
Xu
, and
D.
Ta
, “
Correlation between the combination of apparent integrated backscatter-spectral centroid shift and bone mineral density
,”
J. Med. Ultrason.
43
,
167
173
(
2016
).
40.
Ultrasonic Transdcuers Technical Notes
, https://www.olympus-ims.com/en/resources/white-papers/ultrasonic-transducer-technical-notes/ (Last viewed January 10, 2018).
41.
C. F.
Njeh
,
C. M.
Boivin
, and
C. M.
Langton
, “
The role of ultrasound in the assessment of osteoporosis: A review
,”
Osteoporos. Int.
7
,
7
22
(
1997
).
42.
B. K.
Hoffmeister
,
S. A.
Whitten
,
S. C.
Kaste
, and
J. Y.
Rho
, “
Effect of collagen and mineral content on the high-frequency ultrasonic properties of human cancellous bone
,”
Osteoporos. Int.
13
,
26
32
(
2002
).
43.
B. K.
Hoffmeister
,
S. A.
Whitten
, and
J. Y.
Rho
, “
Low-megahertz ultrasonic properties of bovine cancellous bone
,”
Bone
26
,
635
642
(
2000
).
44.
O.
Riekkinen
,
M. A.
Hakulinen
,
J.
Toyras
, and
J. S.
Jurvelin
, “
Spatial variation of acoustic properties is related with mechanical properties of trabecular bone
,”
Phys. Med. Biol.
52
,
6961
6968
(
2007
).
45.
P.
Laugier
,
P.
Droin
,
A. M.
Laval-Jeantet
, and
G.
Berger
, “
In vitro assessment of the relationship between acoustic properties and bone mass density of the calcaneus by comparison of ultrasound parametric imaging and quantitative computed tomography
,”
Bone
20
,
157
165
(
1997
).
46.
T.
Hildebrand
,
A.
Laib
,
R.
Muller
,
J.
Dequeker
, and
P.
Ruegsegger
, “
Direct three-dimensional morphometric analysis of human cancellous bone: Microstructural data from spine, femur, iliac crest, and calcaneus
,”
J. Bone Miner. Res.
14
,
1167
1174
(
1999
).
47.
K. A.
Wear
,
A. P.
Stuber
, and
J. C.
Reynolds
, “
Relationships of ultrasonic backscatter with ultrasonic attenuation, sound speed and bone mineral density in human calcaneus
,”
Ultrasound Med. Biol.
26
,
1311
1316
(
2000
).
48.
M. J.
Grimm
and
J. L.
Williams
, “
Assessment of bone quantity and ‘quality’ by ultrasound attenuation and velocity in the heel
,”
Clin. Biomech. (Bristol, Avon)
12
,
281
285
(
1997
).
49.
C. M.
Langton
,
C. F.
Njeh
,
R.
Hodgskinson
, and
J. D.
Currey
, “
Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation
,”
Bone
18
,
495
503
(
1996
).
50.
K.
Mizuno
,
M.
Matsukawa
,
T.
Otani
,
P.
Laugier
, and
F.
Padilla
, “
Propagation of two longitudinal waves in human cancellous bone: An in vitro study
,”
J. Acoust. Soc. Am.
125
,
3460
3466
(
2009
).
51.
C. C.
Anderson
,
A. Q.
Bauer
,
M. R.
Holland
,
M.
Pakula
,
P.
Laugier
,
G. L.
Bretthorst
, and
J. G.
Miller
, “
Inverse problems in cancellous bone: Estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory
,”
J. Acoust. Soc. Am.
128
,
2940
2948
(
2010
).
52.
J. J.
Hoffman
,
A. M.
Nelson
,
M. R.
Holland
, and
J. G.
Miller
, “
Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography
,”
J. Acoust. Soc. Am.
132
,
1830
1837
(
2012
).
53.
B. K.
Hoffmeister
,
A. M.
Viano
,
L. C.
Fairbanks
,
S. C.
Ebron
, and
J. A.
McPherson
, “
Effect of gate choice on backscatter difference measurements of cancellous bone
,”
J. Acoust. Soc. Am.
142
,
540
550
(
2017
).
54.
P. H.
Nicholson
,
M. J.
Haddaway
, and
M. W.
Davie
, “
The dependence of ultrasonic properties on orientation in human vertebral bone
,”
Phys. Med. Biol.
39
,
1013
1024
(
1994
).
55.
N.
Bochud
,
Q.
Vallet
,
J. G.
Minonzio
, and
P.
Laugier
, “
Predicting bone strength with ultrasonic guided waves
,”
Sci. Rep.
7
,
43628
(
2017
).
56.
J.
Chen
,
J.
Foiret
,
J. G.
Minonzio
,
M.
Talmant
,
Z.
Su
,
L.
Cheng
, and
P.
Laugier
, “
Measurement of guided mode wavenumbers in soft tissue-bone mimicking phantoms using ultrasonic axial transmission
,”
Phys. Med. Biol.
57
,
3025
3037
(
2012
).
57.
J.
Chen
and
Z.
Su
, “
On ultrasound waves guided by bones with coupled soft tissues: A mechanism study and in vitro calibration
,”
Ultrasonics
54
,
1186
1196
(
2014
).
58.
G.
Sellani
,
D.
Fernandes
,
A.
Nahari
,
M. F.
de Oliveira
,
C.
Valois
,
W. C.
Pereira
, and
C. B.
Machado
, “
Assessing heating distribution by therapeutic ultrasound on bone phantoms and in vitro human samples using infrared thermography
,”
J. Ther. Ultrasound
4
,
13
(
2016
).
59.
P. T. C. R.
Rosa
,
M. D. P. A. J. F.
Pereira
,
C. B.
Machado
, and
W. C. A.
Pereira
, “
Evaluating periodicity of trabecular bone phantoms using ultrasound signals
,”
Proceeding of Pan American Health Care Exchanges Conference
,
Rio de Janeiro, Brazil
(
March 28–April 1, 2011
), pp.
309
313
.
You do not currently have access to this content.