Echolocating bats can rapidly modify frequency modulation (FM) curvatures of their calls when facing challenging echolocation tasks. Frequency parameters, such as start/end/peak frequency, have often been extracted from the time-frequency domain to study the call variation. Even though this kind of signal investigation method reveals important findings, these approaches to analyze bat echolocation calls use bulk parameters, which hide subtleties in the call structure that may be important to the bat. In some cases, calls can have the same start and end frequencies but have different FM curvatures, and subsequently may influence the sensory task performance. In the present study, the authors demonstrate an algorithm using a combination of digital filters, power limited time-frequency information, derivative dynamic time warping, and agglomerative hierarchical clustering to extract and categorize the time-frequency components (TFCs) of 21 calls from Brazilian free-tailed bat (Tadarida brasiliensis) to quantitatively compare FM curvatures. The detailed curvature analysis shows an alternative perspective to look into the TFCs and hence serves as the preliminary step to understand the adaptive call design of bats.

1.
Aldenderfer
,
M. S.
, and
Blashfield
,
R. K.
(
1984
).
Cluster Analysis
(
Sage Publications
,
Beverly Hills, CA
).
2.
Altes
,
R. A.
(
1990
). “
Radar/sonar acceleration estimation with linear-period modulated waveforms
,”
IEEE Trans. Aerosp. Electron. Syst.
26
(
6
),
914
924
.
3.
Au
,
W. W.
, and
Simmons
,
J. A.
(
2007
). “
Echolocation in dolphins and bats
,”
Phys. Today
60
(
9
),
40
45
.
4.
Auger
,
F.
,
Flandrin
,
P.
,
Gonçalvès
,
P.
, and
Lemoine
,
O.
(
1996
). “
Time-frequency toolbox
,” CNRS France-Rice University,
46
pp.
5.
Batista
,
G. E.
,
Wang
,
X.
, and
Keogh
,
E. J.
(
2011
). “
A complexity-invariant distance measure for time series
,” in
Proceedings of the 2011 SIAM International Conference on Data Mining
, pp.
699
710
.
6.
Boashash
,
B.
(
1992a
). “
Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals
,”
Proc. IEEE
80
(
4
),
520
538
.
7.
Boashash
,
B.
(
1992b
). “
Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications
,”
Proc. IEEE
80
(
4
),
540
568
.
8.
Boashash
,
B.
(
2015
).
Time-Frequency Signal Analysis and Processing: A Comprehensive Reference
(
Academic Press
,
New York
).
9.
Bonato
,
P.
,
Roy
,
S. H.
,
Knaflitz
,
M.
, and
De Luca
,
C. J.
(
2001
). “
Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions
,”
IEEE Trans. Biomed. Eng.
48
(
7
),
745
753
.
10.
Boonman
,
A.
, and
Schnitzler
,
H. U.
(
2005
). “
Frequency modulation patterns in the echolocation signals of two vespertilionid bats
,”
J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol.
191
(
1
),
13
21
.
11.
Boonman
,
A. M.
,
Parsons
,
S.
, and
Jones
,
G.
(
2003
). “
The influence of flight speed on the ranging performance of bats using frequency modulated echolocation pulses
,”
J. Acoust. Soc. Am.
113
(
1
),
617
628
.
12.
Borda
,
M.
,
Nafornita
,
I.
,
Isar
,
D.
, and
Isar
,
A.
(
2005
). “
New instantaneous frequency estimation method based on image processing techniques
,”
J. Electron. Imaging.
14
(
2
),
023013
.
13.
Brito
,
N. S. D.
,
de Souza
,
B. A.
,
dos Santos
,
W. C.
, and
de Andrade Fortunato
,
L. M.
(
2016
). “
Analysis of the influence of the window used in the Short-Time Fourier Transform for High Impedance Fault detection
,” in
17th International Conference on Harmonics and Quality of Power (ICHQP)
, pp.
350
355
.
14.
Brown
,
J. C.
,
Hodgins-Davis
,
A.
, and
Miller
,
P. J.
(
2006
). “
Classification of vocalizations of killer whales using dynamic time warping
,”
J. Acoust. Soc. Am.
119
(
3
),
EL34
EL40
.
15.
Brown
,
J. C.
, and
Miller
,
P. J.
(
2007
). “
Automatic classification of killer whale vocalizations using dynamic time warping
,”
J. Acoust. Soc. Am.
122
(
2
),
1201
1207
.
16.
Buck
,
J. R.
, and
Tyack
,
P. L.
(
1993
). “
A quantitative measure of similarity for tursiops truncatus signature whistles
,”
J. Acoust. Soc. Am.
94
(
5
),
2497
2506
.
17.
Cohen
,
F. S.
,
Kadambe
,
S.
, and
Boudreaux-Bartels
,
G. F.
(
1993
). “
Tracking of unknown nonstationary chirp signals using unsupervised clustering in the Wigner distribution space
,”
IEEE Trans. Signal Process.
41
(
11
),
3085
3101
.
18.
Corcoran
,
A. J.
, and
Conner
,
W. E.
(
2014
). “
Bats jamming bats: Food competition through sonar interference
,”
Science
346
(
6210
),
745
747
.
19.
Debbal
,
S. M.
, and
Bereksi-Reguig
,
F.
(
2007
). “
Time-frequency analysis of the first and the second heartbeat sounds
,”
Appl. Math. Comp.
184
(
2
),
1041
1052
.
20.
Deecke
,
V. B.
,
Ford
,
J. K.
, and
Spong
,
P.
(
1999
). “
Quantifying complex patterns of bioacoustic variation: Use of a neural network to compare killer whale (Orcinus orca) dialects
,”
J. Acoust. Soc. Am.
105
(
4
),
2499
2507
.
21.
Deecke
,
V. B.
, and
Janik
,
V. M.
(
2006
). “
Automated categorization of bioacoustic signals: Avoiding perceptual pitfalls
,”
J. Acoust. Soc. Am.
119
(
1
),
645
653
.
22.
Denny
,
M.
(
2004
). “
The physics of bat echolocation: Signal processing techniques
,”
Am. J. Phys.
72
(
12
),
1465
1477
.
23.
DiCecco
,
J.
,
Gaudette
,
J. E.
, and
Simmons
,
J. A.
(
2013
). “
Multi-component separation and analysis of bat echolocation calls
,”
J. Acoust. Soc. Am.
133
(
1
),
538
546
.
24.
Ding
,
H.
,
Trajcevski
,
G.
,
Scheuermann
,
P.
,
Wang
,
X.
, and
Keogh
,
E.
(
2008
). “
Querying and mining of time series data: Experimental comparison of representations and distance measures
,”
Proc. VLDB Endowment
1
(
2
),
1542
1552
.
25.
Djurovic
,
I.
, and
Stankovic
,
L.
(
2004
). “
Modification of the ICI rule-based IF estimator for high noise environments
,”
IEEE Trans. Signal Process.
52
(
9
),
2655
2661
.
26.
Esfahanian
,
M.
,
Zhuang
,
H.
, and
Erdol
,
N.
(
2014
). “
On contour-based classification of dolphin whistles by type
,”
Appl. Acoust.
76
,
274
279
.
27.
Fenton
,
M. B.
,
Faure
,
P. A.
, and
Ratcliffe
,
J. M.
(
2012
). “
Evolution of high duty cycle echolocation in bats
,”
J. Exp. Biol.
215
(
17
),
2935
2944
.
28.
Frasier
,
K. E.
,
Henderson
,
E.
,
Bassett
,
H. R.
, and
Roch
,
M. A.
(
2016
). “
Automated identification and clustering of subunits within delphinid vocalizations
,”
Marine Mammal Sci.
32
(
3
),
911
930
.
29.
Gade
,
S.
, and
Gram-Hansen
,
K.
(
1996
). “
Non-stationary signal analysis using wavelet transform, short-time Fourier transform and Wigner-Ville distribution
,” Bruel & Kjaer Technical Review No. 2.
30.
Ganeshapillai
,
G.
(
2011
). “
Methods to improve the signal quality of corrupted multi-parameter physiological signals
,” Doctoral dissertation,
Massachusetts Institute of Technology
.
31.
Gillam
,
E. H.
,
Hristov
,
N. I.
,
Kunz
,
T. H.
, and
McCracken
,
G. F.
(
2010
). “
Echolocation behavior of Brazilian free-tailed bats during dense emergence flights
,”
J. Mammal.
91
(
4
),
967
975
.
32.
Hackett
,
T. D.
,
Korine
,
C.
, and
Holderied
,
M. W.
(
2013
). “
The importance of Acacia trees for insectivorous bats and arthropods in the Arava desert
,”
PLoS One
8
(
2
),
e52999
.
33.
Harley
,
H. E.
(
2008
). “
Whistle discrimination and categorization by the Atlantic bottlenose dolphin (Tursiops truncatus): A review of the signature whistle framework and a perceptual test
,”
Behavioural Process.
77
(
2
),
243
268
.
34.
Harris
,
F. J.
(
1978
). “
On the use of windows for harmonic analysis with the discrete Fourier transform
,”
Proc. IEEE
66
(
1
),
51
83
.
35.
Hildebrand
,
F. B.
(
1956
).
Introduction to Numerical Analysis
(
McGraw-Hill
,
New York
).
36.
Hlawatsch
,
F.
, and
Boudreaux-Bartels
,
G. F.
(
1992
). “
Linear and quadratic time-frequency signal representations
,”
IEEE Trans. Signal Process.
9
(
2
),
21
67
.
37.
Holderied
,
M. W.
,
Baker
,
C. J.
,
Vespe
,
M.
, and
Jones
,
G.
(
2008
). “
Understanding signal design during the pursuit of aerial insects by echolocating bats: Tools and applications
,”
Integr. Comp. Biol.
48
(
1
),
74
84
.
38.
Holderied
,
M. W.
,
Jones
,
G.
, and
von Helversen
,
O.
(
2006
). “
Flight and echolocation behaviour of whiskered bats commuting along a hedgerow: Range-dependent sonar signal design, Doppler tolerance and evidence for acoustic focussing
,”
J. Exp. Biol.
209
(
10
),
1816
1826
.
39.
Horta
,
P.
,
Raposeira
,
H.
,
Santos
,
H.
,
Alves
,
P.
,
Palmeirim
,
J.
,
Godinho
,
R.
,
Jones
,
G.
, and
Rebelo
,
H.
(
2015
). “
Bats' echolocation call characteristics of cryptic Iberian Eptesicus species
,”
Eur. J. Wildl. Res.
61
(
6
),
813
818
.
40.
Itakura
,
F.
(
1975
). “
Minimum prediction residual principle applied to speech recognition
,”
IEEE Trans. Acoust., Speech, Signal Process.
23
(
1
),
67
72
.
41.
Ivanovic
,
V. N.
,
Dakovic
,
M.
, and
Stankovic
,
L.
(
2003
). “
Performance of quadratic time-frequency distributions as instantaneous frequency estimators
,”
IEEE Trans. Signal Process.
51
(
1
),
77
89
.
42.
Janik
,
V. M.
(
1999
). “
Pitfalls in the categorization of behaviour: A comparison of dolphin whistle classification methods
,”
Anim. Behav.
57
(
1
),
133
143
.
43.
Janik
,
V. M.
,
Todt
,
D.
, and
Dehnhardt
,
G.
(
1994
). “
Signature whistle variations in a bottlenosed dolphin, Tursiops truncates
,”
Behav. Ecol. Sociobiol.
35
(
4
),
243
248
.
44.
Jung
,
K.
,
Molinari
,
J.
, and
Kalko
,
E. K.
(
2014
). “
Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (Molossidae)
,”
PLoS One
9
(
1
),
e85279
.
45.
Keogh
,
E. J.
, and
Pazzani
,
M. J.
(
2000
). “
Scaling up dynamic time warping for datamining applications
,” in
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp.
285
289
.
46.
Keogh
,
E. J.
, and
Pazzani
,
M. J.
(
2001
). “
Derivative dynamic time warping
,” in
Proceedings of the 2001 SIAM International Conference on Data Mining
, pp.
1
11
.
47.
Keogh
,
E.
, and
Ratanamahatana
,
C. A.
(
2005
). “
Exact indexing of dynamic time warping
,”
Knowl. Inf. Syst.
7
(
3
),
358
386
.
48.
Khan
,
N. A.
, and
Boashash
,
B.
(
2016
). “
Multi-component instantaneous frequency estimation using locally adaptive directional time frequency distributions
,”
Int. J. Adapt. Control. Signal Process.
30
(
3
),
429
442
.
49.
Khan
,
N. A.
, and
Sandsten
,
M.
(
2016
). “
Time–frequency image enhancement based on interference suppression in Wigner–Ville distribution
,”
Signal Process.
127
,
80
85
.
50.
Kloepper
,
L. N.
,
Linnenschmidt
,
M.
,
Blowers
,
Z.
,
Branstetter
,
B.
,
Ralston
,
J.
, and
Simmons
,
J. A.
(
2016
). “
Estimating colony sizes of emerging bats using acoustic recordings
,”
R. Soc. Open Sci.
3
(
3
),
160022
.
51.
Kopsinis
,
Y.
,
Aboutanios
,
E.
,
Waters
,
D. A.
, and
McLaughlin
,
S.
(
2010
). “
Time-frequency and advanced frequency estimation techniques for the investigation of bat echolocation calls
,”
J. Acoust. Soc. Am.
127
(
2
),
1124
1134
.
52.
Lerga
,
J.
,
Sucic
,
V.
, and
Boashash
,
B.
(
2011
). “
An efficient algorithm for instantaneous frequency estimation of nonstationary multicomponent signals in low SNR
,”
EURASIP J. Adv. Signal Process.
2011
(
1
),
725189
.
53.
Lessig
,
V. P.
(
1972
). “
Comparing cluster analyses with cophenetic correlation
,”
J. Mark. Res.
9
(
1
),
82
84
.
54.
Masters
,
W. M.
, and
Raver
,
K. A. S.
(
2000
). “
Range discrimination by big brown bats (Eptesicus fuscus) using altered model echoes: Implications for signal processing
,”
J. Acoust. Soc. Am.
107
(
1
),
625
637
.
55.
McCowan
,
B.
(
1995
). “
A new quantitative technique for categorizing whistles using simulated signals and whistles from captive bottlenose dolphins (Delphinidae, Tursiops truncatus)
,”
Ethology
100
(
3
),
177
193
.
56.
McCowan
,
B.
, and
Reiss
,
D.
(
1995
). “
Quantitative comparison of whistle repertoires from captive adult bottlenose dolphins (Delphinidae, Tursiops truncatus): A re-evaluation of the signature whistle hypothesis
,”
Ethology
100
(
3
),
194
209
.
57.
Meliza
,
C. D.
,
Keen
,
S. C.
, and
Rubenstein
,
D. R.
(
2013
). “
Pitch-and spectral-based dynamic time warping methods for comparing field recordings of harmonic avian vocalizations
,”
J. Acoust. Soc. Am.
134
(
2
),
1407
1415
.
58.
Mellinger
,
D. K.
,
Martin
,
S. W.
,
Morrissey
,
R. P.
,
Thomas
,
L.
, and
Yosco
,
J. J.
(
2011
). “
A method for detecting whistles, moans, and other frequency contour sounds
,”
J. Acoust. Soc. Am.
129
(
6
),
4055
4061
.
59.
Mora
,
E. C.
,
Macías
,
S.
,
Hechavarría
,
J.
,
Vater
,
M.
, and
Kössl
,
M.
(
2013
). “
Evolution of the heteroharmonic strategy for target-range computation in the echolocation of Mormoopidae
,”
Front. Physiol.
4
,
141
.
60.
Nuttall
,
A.
(
1981
). “
Some windows with very good sidelobe behavior
,”
IEEE Trans. Acoust., Speech, Signal Process.
29
(
1
),
84
91
.
61.
Obrist
,
M. K.
,
Boesch
,
R.
, and
Flückiger
,
P. F.
(
2004
). “
Variability in echolocation call design of 26 Swiss bat species: Consequences, limits and options for automated field identification with a synergetic pattern recognition approach
,”
Mammalia
68
(
4
),
307
322
.
62.
O'Farrell
,
M. J.
(
1997
). “
Use of echolocation calls for the identification of free-flying bats
,”
Trans. Western Sec. Wildlife Soc.
33
,
1
8
.
63.
Ota
,
T. A.
(
2013
). “
Numerical study of the effect of normalised window size, sampling frequency, and noise level on short time Fourier transform analysis
,”
Rev. Sci. Instrum.
84
(
10
),
103906
.
64.
Pedro
,
A. R. S.
, and
Simonetti
,
J. A.
(
2014
). “
Variation in search-phase calls of Lasiurus varius (Chiroptera: Vespertilionidae) in response to different foraging habitats
,”
J. Mammal.
95
(
5
),
1004
1010
.
65.
Peng
,
Z. K.
,
Meng
,
G.
,
Chu
,
F. L.
,
Lang
,
Z. Q.
,
Zhang
,
W. M.
, and
Yang
,
Y.
(
2011
). “
Polynomial chirplet transform with application to instantaneous frequency estimation
,”
IEEE Trans. Instrum. Meas.
60
(
9
),
3222
3229
.
66.
Phinyomark
,
A.
,
Thongpanja
,
S.
,
Hu
,
H.
,
Phukpattaranont
,
P.
, and
Limsakul
,
C.
(
2012
). “
The usefulness of mean and median frequencies in electromyography analysis
,” in
Computational Intelligence in Electromyography Analysis—A Perspective on Current Applications and Future Challenges
, InTech.
67.
Pikula
,
S.
, and
Beneš
,
P.
(
2014
). “
A new method for interference reduction in the smoothed pseudo Wigner-Ville distribution
,” in
Proceedings of 8th International Conference on Sensing Technology
, pp.
599
603
.
68.
Ratanamahatana
,
C. A.
, and
Keogh
,
E.
(
2005
). “
Three myths about dynamic time warping data mining
,” in
Proceedings of the 2005 SIAM International Conference on Data Mining
, pp.
506
510
.
69.
Roch
,
M. A.
,
Brandes
,
T. S.
,
Patel
,
B.
,
Barkley
,
Y.
,
Baumann-Pickering
,
S.
, and
Soldevilla
,
M. S.
(
2011
). “
Automated extraction of odontocete whistle contours
,”
J. Acoust. Soc. Am.
130
(
4
),
2212
2223
.
70.
Sakoe
,
H.
, and
Chiba
,
S.
(
1978
). “
Dynamic programming algorithm optimization for spoken word recognition
,”
IEEE Trans. Acoust., Speech, Signal Process.
26
(
1
),
43
49
.
71.
Saraçli
,
S.
,
Doğan
,
N.
, and
Doğan
,
İ.
(
2013
). “
Comparison of hierarchical cluster analysis methods by cophenetic correlation
,”
J. Inequal. Appl.
2013
(
1
),
203
.
72.
Schnitzler
,
H. U.
,
Moss
,
C. F.
, and
Denzinger
,
A.
(
2003
). “
From spatial orientation to food acquisition in echolocating bats
,”
Trends Ecol. Evol.
18
(
8
),
386
394
.
73.
Simmons
,
J. A.
,
Lavender
,
W. A.
,
Lavender
,
B. A.
,
Childs
,
J. E.
,
Hulebak
,
K.
,
Rigden
,
M. R.
,
Sherman
,
J.
,
Woolman
,
B.
, and
O'Farrell
,
M. J.
(
1978
). “
Echolocation by free-tailed bats (Tadarida)
,”
J. Comp. Physiol. Psychol.
125
(
4
),
291
299
.
74.
Sokal
,
R. R.
, and
Rohlf
,
F. J.
(
1962
). “
The comparison of dendrograms by objective methods
,”
Taxon
11
,
33
40
.
75.
Stanković
,
L.
,
Daković
,
M.
, and
Thayaparan
,
T.
(
2014a
).
Time-Frequency Signal Analysis with Applications
(
Artech House
,
Norwood, MA
).
76.
Stanković
,
L.
,
Djurović
,
I.
,
Stanković
,
S.
,
Simeunović
,
M.
,
Djukanović
,
S.
, and
Daković
,
M.
(
2014b
). “
Instantaneous frequency in time–frequency analysis: Enhanced concepts and performance of estimation algorithms
,”
Digital Signal Process.
35
,
1
13
.
77.
Stathopoulos
,
V.
,
Zamora-Gutierrez
,
V.
,
Jones
,
K. E.
, and
Girolami
,
M.
(
2017
). “
Bat echolocation call identification for biodiversity monitoring: A probabilistic approach
,”
J. R. Stat. Soc. Ser. C
67
,
165
183
.
78.
Stulen
,
F. B.
, and
De Luca
,
C. J.
(
1981
). “
Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity
,”
IEEE Trans. Biomed. Eng.
BME-28
,
515
523
.
79.
Surlykke
,
A.
, and
Kalko
,
E. K.
(
2008
). “
Echolocating bats cry out loud to detect their prey
,”
PLoS One
3
(
4
),
e2036
.
80.
Surlykke
,
A.
, and
Moss
,
C. F.
(
2000
). “
Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory
,”
J. Acoust. Soc. Am.
108
(
5
),
2419
2429
.
81.
Surlykke
,
A.
,
Pedersen
,
S. B.
, and
Jakobsen
,
L.
(
2009
). “
Echolocating bats emit a highly directional sonar sound beam in the field
,”
Proc. Biol. Sci.
276
(
1658
),
853
860
.
82.
Taebi
,
A.
, and
Mansy
,
H. A.
(
2017
). “
Time-frequency distribution of seismocardiographic signals: A comparative study
,”
Bioeng.
4
(
2
),
32
.
83.
Thongpanja
,
S.
,
Phinyomark
,
A.
,
Phukpattaranont
,
P.
, and
Limsakul
,
C.
(
2013
). “
Mean and median frequency of EMG signal to determine muscle force based on time-dependent power spectrum
,”
Elektron. Elektron.
19
(
3
),
51
56
.
84.
Vespe
,
M.
,
Jones
,
G.
,
Baker
,
C.
, and
Blacknell
,
D.
(
2009
). “
Biologically inspired waveform diversity for synthetic autonomous navigation sensing
,” Department of Electronic and Electrical Engineering, University College, London, United Kingdom.
85.
Yang
,
Y.
,
Peng
,
Z. K.
,
Dong
,
X. J.
,
Zhang
,
W. M.
, and
Meng
,
G.
(
2014
). “
General parameterized time-frequency transform
,”
IEEE Trans. Signal Process.
62
(
11
),
2751
2764
.
86.
Yang
,
Y.
,
Peng
,
Z. K.
,
Meng
,
G.
, and
Zhang
,
W. M.
(
2012
). “
Spline-kernelled chirplet transform for the analysis of signals with time-varying frequency and its application
,”
IEEE Trans. Ind. Electron.
59
(
3
),
1612
1621
.
87.
Yang
,
Y.
,
Zhang
,
W.
,
Peng
,
Z.
, and
Meng
,
G.
(
2013
). “
Multicomponent signal analysis based on polynomial chirplet transform
,”
IEEE Trans. Ind. Electron.
60
(
9
),
3948
3956
.
88.
Ykhlef
,
F.
,
Ykhlef
,
H.
, and
Aissat
,
A.
(
2012
). “
Influence of Dolph-Chebyshev window on speech enhancement
,” in
2012 International Conference on Multimedia Computing and Systems (ICMCS)
, pp.
140
143
.
89.
Zhao
,
J.
, and
Itti
,
L.
(
2016
). “
shapeDTW: Shape Dynamic Time Warping
,” arXiv preprint arXiv:1606.01601.
You do not currently have access to this content.