The feasibility of data based machine learning applied to ultrasound tomography is studied to estimate water-saturated porous material parameters. In this work, the data to train the neural networks is simulated by solving wave propagation in coupled poroviscoelastic-viscoelastic-acoustic media. As the forward model, a high-order discontinuous Galerkin method is considered, while deep convolutional neural networks are used to solve the parameter estimation problem. In the numerical experiment, the material porosity and tortuosity is estimated, while the remaining parameters which are of less interest are successfully marginalized in the neural networks-based inversion. Computational examples confirm the feasibility and accuracy of this approach.

1.
N.
Duric
,
P. J.
Littrup
,
C.
Li
,
O.
Roy
, and
S.
Schmidt
, “
Ultrasound tomography: A decade-long journey from the laboratory to clinic
,” in
Ultrasound Imaging and Therapy
, edited by
A.
Karellas
and
B. R.
Thomadsen
(
CRC Press
,
Boca Raton, FL
,
2015
).
2.
M.
Biot
, “
Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range
,”
J. Acoust. Soc. Am.
28
(
2
),
168
178
(
1956
).
3.
M.
Biot
, “
Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
(
2
),
179
191
(
1956
).
4.
M.
Biot
, “
Mechanics of deformation and acoustic propagation in porous media
,”
J. Appl. Phys.
33
(
4
),
1482
1498
(
1962
).
5.
M.
Biot
, “
Generalized theory of acoustic propagation in porous dissipative media
,”
J. Acoust. Soc. Am.
34
(
5
),
1254
1264
(
1962
).
6.
N.
Sebaa
,
Z.
Fellah
,
M.
Fellah
,
E.
Ogam
,
A.
Wirgin
,
F.
Mitri
,
C.
Depollier
, and
W.
Lauriks
, “
Ultrasonic characterization of human cancellous bone using the Biot theory: Inverse problem
,”
J. Acoust. Soc. Am.
120
(
4
),
1816
1824
(
2006
).
7.
M.
Yvonne Ou
, “
On reconstruction of dynamic permeability and tortuosity from data at distinct frequencies
,”
Inv. Probl.
30
(
9
),
095002
(
2014
).
8.
T.
Lähivaara
,
N.
Dudley Ward
,
T.
Huttunen
,
Z.
Rawlinson
, and
J.
Kaipio
, “
Estimation of aquifer dimensions from passive seismic signals in the presence of material and source uncertainties
,”
Geophys. J. Int.
200
,
1662
1675
(
2015
).
9.
J.
Parra Martinez
,
O.
Dazel
,
P.
Göransson
, and
J.
Cuenca
, “
Acoustic analysis of anisotropic poroelastic multilayered systems
,”
J. Appl. Phys.
119
(
8
),
084907
(
2016
).
10.
A.
Krizhevsky
,
I.
Sutskever
, and
G.
Hinton
, “
Imagenet classification with deep convolutional neural networks
,” in
Advances in Neural Information Processing Systems 25
, edited by
F.
Pereira
,
C. J. C.
Burges
,
L.
Bottou
, and
K. Q.
Weinberger
(
Curran Associates
,
Red Hook, NY
,
2012
), pp.
1097
1105
.
11.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
(
7553
),
436
444
(
2015
).
12.
P. S.
Maclin
,
J.
Dempsey
,
J.
Brooks
, and
J.
Rand
, “
Using neural networks to diagnose cancer
,”
J. Med. Syst.
15
(
1
),
11
19
(
1991
).
13.
L. A.
Menendez
,
F. J.
de Cos Juez
,
F. S.
Lasheras
, and
J. A.
Riesgo
, “
Artificial neural networks applied to cancer detection in a breast screening programme
,”
Math. Comput. Model.
52
(
7-8
),
983
991
(
2010
).
14.
P.
Muukkonen
and
J.
Heiskanen
, “
Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data
,”
Remote Sens. Environ.
99
(
4
),
434
447
(
2005
).
15.
H.
Niska
,
J.-P.
Skön
,
P.
Packalen
,
T.
Tokola
,
M.
Maltamo
, and
M.
Kolehmainen
, “
Neural networks for the prediction of species-specific plot volumes using airborne laser scanning and aerial photographs
,”
IEEE Trans. Geosci. Remote Sens.
48
(
3
),
1076
1085
(
2009
).
16.
I. N.
Daliakopoulos
,
P.
Coulibaly
, and
I. K.
Tsanis
, “
Groundwater level forecasting using artificial neural networks
,”
J. Hydrol.
309
(
1-4
),
229
240
(
2005
).
17.
S.
Mohanty
,
K.
Jha
,
A.
Kumar
, and
K. P.
Sudheer
, “
Artificial neural network modeling for groundwater level forecasting in a River Island of Eastern India
,”
Water Resour. Manag.
24
(
9
),
1845
1865
(
2010
).
18.
Y.
LeCun
,
L.
Bottou
,
Y.
Bengio
, and
P.
Haffner
, “
Gradient-based learning applied to document recognition
,”
Proc. IEEE
86
(
11
),
2278
2324
(
1998
).
19.
Y.
Bengio
, “
Learning deep architectures for AI
,”
Found. Trends Mach. Learn.
2
(
1
),
1
127
(
2009
).
20.
J.
Carcione
,
Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media
(
Elsevier
,
Amsterdam
,
2001
).
21.
C.
Morency
and
J.
Tromp
, “
Spectral-element simulations of wave propagation in porous media
,”
Geophys. J. Int.
175
(
1
),
301
345
(
2008
).
22.
L.
Wilcox
,
G.
Stadler
,
C.
Burstedde
, and
O.
Ghattas
, “
A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media
,”
J. Comput. Phys.
229
,
9373
9396
(
2010
).
23.
N.
Dudley Ward
,
T.
Lähivaara
, and
S.
Eveson
, “
A discontinuous Galerkin method for poroelastic wave propagation: Two-dimensional case
,”
J. Comput. Phys.
350
,
690
727
(
2017
).
24.
M.
Käser
and
M.
Dumbser
, “
An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—I. The two-dimensional isotropic case with external source terms
,”
Geophys. J. Int.
166
(
23
),
855
877
(
2006
).
25.
J.
de la Puente
,
M.
Dumbser
,
M.
Käser
, and
H.
Igel
, “
Discontinuous Galerkin methods for wave propagation in poroelastic media
,”
Geophysics
73
(
5
),
T77
T97
(
2008
).
26.
G.
Gabard
and
O.
Dazel
, “
A discontinuous Galerkin method with plane waves for sound-absorbing materials
,”
Int. J. Numer. Meth. Eng.
104
(
12
),
1115
1138
(
2015
).
27.
J.
Hesthaven
and
T.
Warburton
,
Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications
(
Springer
,
Berlin
,
2007
).
28.
N.
Buduma
,
Fundamentals of Deep Learning, Designing Next-Generation Machine Intelligence Algorithms
(
O'Reilly Media
,
Sebastopol, CA
,
2017
).
29.
R.
Hahnloser
,
M. A.
Sarpeshkar
,
M. A.
Mahowald
,
R. J.
Douglas
, and
H. S.
Seung
, “
Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit
,”
Nature
405
,
947
951
(
2000
).
30.
K.
Fukushima
, “
Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
,”
Biol. Cybern.
36
,
193
202
(
1980
).
31.
D.
Scherer
,
A.
Müller
, and
S.
Behnke
,
Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition
(
Springer
,
Berlin
,
2010
), pp.
92
101
.
32.
S.
Linnainmaa
, “
The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors
” (in Finnish), Master's thesis, University of Helsinki, (
1970
), http://www.idsia.ch/~juergen/linnainmaa1970thesis.pdf (Last viewed February 9, 2018).
33.
M.
Carpenter
and
C.
Kennedy
, “
Fourth-order 2N-storage Runge-Kutta schemes
,”
Technical Report No. NASA-TM-109112
(
1994
).
34.
E.
Blanc
,
D.
Komatitsch
,
E.
Chaljub
,
B.
Lombard
, and
Z.
Xie
, “
Highly accurate stability-preserving optimization of the Zener viscoelastic model, with application to wave propagation in the presence of strong attenuation
,”
Geophys. J. Int.
205
(
1
),
427
439
(
2016
).
35.
T.
Lähivaara
and
T.
Huttunen
, “
A non-uniform basis order for the discontinuous Galerkin method of the acoustic and elastic wave equations
,”
Appl. Numer. Math.
61
,
473
486
(
2011
).
36.
T.
Lähivaara
and
T.
Huttunen
, “
A non-uniform basis order for the discontinuous Galerkin method of the 3D dissipative wave equation with perfectly matched layer
,”
J. Comput. Phys.
229
,
5144
5160
(
2010
).
37.
J.
Kaipio
and
E.
Somersalo
, “
Statistical inverse problems: Discretization, model reduction and inverse crimes
,”
J. Comput. Appl. Math.
198
(
2
),
493
504
(
2007
).
38.
D.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” ArXiv e-print (
2014
).
You do not currently have access to this content.