The subject of acoustic radiation pressure on a gas bubble is important in many applications because it controls how bubbles are moved by acoustic fields to target locations, and often how they act upon the target. Previous theoretical treatments assume a spherical bubble undergoing linear pulsations, but some (such as cleaning using Faraday waves on the bubble wall) require that the bubble be aspherical. Therefore, this paper derives ways to calculate the variation in the radiation pressure due to the non-spherical bubble oscillations. The magnitude and direction of the radiation force are determined by two factors: the amplitude of volume oscillations, Vm, and the phase relationship between those oscillations and the acoustic field which drives them. There are two key findings that correct for the predictions of a model accounting for only linear pulsations. First, the growth of the radiation force slows down as Vm ceases to increase linearly with increasing amplitude of the acoustic wave above the threshold. Second, although both models show that the direction of the force relative of the standing wave antinode can be attractive or repulsive depending on frequency, when distortion modes are included the frequency at which this force changes its sign is shifted.

1.
K.
Yosioka
and
Y.
Kawasima
, “
Acoustic radiation pressure on a compressible sphere
,”
Acta Acust. united Acust.
5
,
167
173
(
1955
).
2.
P.
Gor'kov
, “
On the forces acting on a small particle in an acoustic field in an ideal fluid
,”
Sov. Phys. Dokl.
6
,
773
775
(
1962
).
3.
A.
Eller
, “
Force on a bubble in a standing acoustic wave
,”
J. Acoust. Soc. Am.
43
,
170
171
(
1968
).
4.
P.
Lee
and
T. G.
Wang
, “
Acoustic radiation force on a bubble
,”
J. Acoust. Soc. Am.
93
,
1637
1640
(
1993
).
5.
A. A.
Doinikov
, “
Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. I. General formula
,”
J. Acoust. Soc. Am.
101
,
713
721
(
1997
).
6.
A. A.
Doinikov
, “
Acoustic radiation pressure on a compressible sphere in a viscous fluid
,”
J. Fluid Mech.
267
,
1
21
(
1994
).
7.
A. A.
Doinikov
, “
On the radiation pressure on small spheres
,”
J. Acoust. Soc. Am.
100
,
1231
1233
(
1996
).
8.
A.
Doinikov
, “
Acoustic radiation force on a bubble: Viscous and thermal effects
,”
J. Acoust. Soc. Am.
103
,
143
147
(
1998
).
9.
J. T.
Karlsen
and
H.
Bruus
, “
Forces acting on a small particle in an acoustical field in a thermoviscous fluid
,”
Phys. Rev. E
92
,
043010
(
2015
).
10.
A. I.
Eller
and
L. A.
Crum
, “
Instability of the motion of a pulsating bubble in a sound field
,”
J. Acoust. Soc. Am.
47
,
762
767
(
1970
).
11.
R. K.
Gould
, “
Rectified diffusion in the presence of, and absence of, acoustic streaming
,”
J. Acoust. Soc. Am.
56
,
1740
1746
(
1974
).
12.
C.
Hullin
, “
Pulsieren de luftblasen in wasser” (“The stability of pulsating air-bubbles in water”)
,
Acustica
37
,
64
72
(
1977
), available at http://www.ingentaconnect.com/contentone/dav/aaua/1977/00000037/00000002/art00004.
13.
A. D.
Phelps
and
T. G.
Leighton
, “
High-resolution bubble sizing through detection of the subharmonic response with a two-frequency excitation technique
,”
J. Acoust. Soc. Am.
99
,
1985
1992
(
1996
).
14.
T. G.
Leighton
,
D. G.
Ramble
, and
A. D.
Phelps
, “
The detection of tethered and rising bubbles using multiple acoustic techniques
,”
J. Acoust. Soc. Am.
101
,
2626
2635
(
1997
).
15.
D.
Ramble
,
A.
Phelps
, and
T. G.
Leighton
, “
On the relation between surface waves on a bubble and the subharmonic combination-frequency emission
,”
Acta Acust. united Acust.
84
,
986
988
(
1998
).
16.
E.
Trinh
,
D.
Thiessen
, and
R.
Holt
, “
Driven and freely decaying nonlinear shape oscillations of drops and bubbles immersed in a liquid: Experimental results
,”
J. Fluid Mech.
364
,
253
272
(
1998
).
17.
Y. E.
Watson
,
P. R.
Birkin
, and
T. G.
Leighton
, “
Electrochemical detection of bubble oscillation
,”
Ultrason. Sonochem.
10
,
65
69
(
2003
).
18.
R.
Dangla
and
C.
Poulain
, “
When sound slows down bubbles
,”
Phys. Fluids
22
,
041703
(
2010
).
19.
M.
Versluis
,
D. E.
Goertz
,
P.
Palanchon
,
I. L.
Heitman
,
S. M.
van der Meer
,
B.
Dollet
,
N.
de Jong
, and
D.
Lohse
, “
Microbubble shape oscillations excited through ultrasonic parametric driving
,”
Phys. Rev. E
82
,
026321
(
2010
).
20.
F.
Prabowo
and
C. D.
Ohl
, “
Surface oscillation and jetting from surface attached acoustic driven bubbles
,”
Ultrason. Sonochem.
18
,
431
435
(
2011
).
21.
X.
Xi
,
F.
Cegla
,
R.
Mettin
,
F.
Holsteyns
, and
A.
Lippert
, “
Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field
,”
J. Acoust. Soc. Am.
135
,
1731
1741
(
2014
).
22.
A. O.
Maksimov
and
T. G.
Leighton
, “
Transient processes near the acoustic threshold of parametrically-driven bubble shape oscillations
,”
Acta Acust. united Acust.
87
,
322
332
(
2001
), available at http://resource.isvr.soton.ac.uk/staff/pubs/PubPDFs/Pub1295.pdf.
23.
A. O.
Maksimov
,
T. G.
Leighton
, and
P. R.
Birkin
, “
Self focusing of acoustically excited Faraday ripples on a bubble wall
,”
Phys. Lett. A.
372
,
3210
3216
(
2008
).
24.
A. O.
Maksimov
and
T. G.
Leighton
, “
Pattern formation on the surface of a bubble driven by an acoustic field
,”
Proc. R. Soc. A
468
,
57
75
(
2012
).
25.
T. J.
Asaki
and
P. L.
Marston
, “
Acoustic radiation force on a bubble driven above resonance
,”
J. Acoust. Soc. Am.
96
,
3096
3099
(
1994
).
26.
T. J.
Asaki
and
P. L.
Marston
, “
Free decay of shape oscillations of bubbles acoustically trapped in water and sea water
,”
J. Fluid Mech.
300
,
149
167
(
1995
).
27.
T. J.
Asaki
and
P. L.
Marston
, “
The effect of a soluble surfactant on quadrupole shape oscillations and dissolution of air bubbles in water
,”
J. Acoust. Soc. Am.
102
,
3372
3377
(
1997
).
28.
R. G.
Holt
, “
Faraday waves and ultrasonic foggers
,”
J. Acoust. Soc. Am.
121
,
3114
(
2007
).
29.
P.
Moriarty
and
R. G.
Holt
, “
Faraday waves produced by periodic substrates: Mimicking the alligator water dance
,”
J. Acoust. Soc. Am.
129
,
2411
(
2011
).
30.
T. G.
Leighton
, “
The acoustic bubble: Oceanic bubble acoustics and ultrasonic cleaning
,”
Proc. Mtgs. Acoust.
24
,
070006
(
2015
).
31.
P. R.
Birkin
,
D. G.
Offin
, and
T. G.
Leighton
, “
An activated fluid stream—New techniques for cold water cleaning
,”
Ultrason. Sonochem.
29
,
612
618
(
2016
).
32.
T. G.
Leighton
, “
The acoustic bubble: Ocean, cetacean and extraterrestrial acoustics, and cold water cleaning
,”
J. Phys.: Conf. Ser.
797
,
012001
(
2017
).
33.
P. R.
Birkin
,
D. G.
Offin
,
C. J. B.
Vian
,
R. P.
Howlin
,
J. I.
Dawson
,
T. J.
Secker
,
R. C.
Herve
,
P.
Stoodley
,
R. O. C.
Oreffo
,
C. W.
Keevil
, and
T. G.
Leighton
, “
Cold water cleaning of brain proteins, biofilm and bone—harnessing an ultrasonically activated stream
,”
Phys. Chem. Chem. Phys.
17
,
20574
20579
(
2015
).
34.
R. P.
Howlin
,
S.
Fabbri
,
D. G.
Offin
,
N.
Symonds
,
K. S.
Kiang
,
R. J.
Knee
,
D. C.
Yoganantham
,
J. S.
Webb
,
P. R.
Birkin
,
T. G.
Leighton
, and
P.
Stoodley
, “
Removal of dental biofilms with a novel ultrasonically-activated water stream
,”
J. Dental Research
94
(
9
),
1303
1309
(
2015
).
35.
P. R.
Birkin
,
D. G.
Offin
,
C. J. B.
Vian
, and
T. G.
Leighton
, “
Electrochemical ‘bubble swarm’ enhancement of ultrasonic surface cleaning
,”
Phys. Chem. Chem. Phys.
17
(
33
),
21709
21715
(
2015
).
36.
M.
Salta
,
L.
Goodes
,
B.
Mass
,
S.
Dennington
,
T.
Secker
, and
T. G.
Leighton
, “
Bubbles vs. biofilms: A novel method for the removal of marine biofilms attached on antifouling coatings using an ultrasonically activated water stream
,”
Surf. Topogr.: Metrol. Prop.
4
(
3
),
034009
(
2016
).
37.
L.
Goodes
,
T.
Harvey
,
N.
Symonds
, and
T. G.
Leighton
, “
A comparison of ultrasonically activated water stream and ultrasonic bath immersion cleaning of railhead leaf-film contaminant
,”
Surf. Topogr.: Metrol. Prop.
4
(
3
),
034004
(
2016
).
38.
T. G.
Leighton
, “
Climate change, dolphins, spaceships and antimicrobial resistance—the impact of bubble acoustics
,” in
Proceedings of the 24th International Congress on Sound and Vibration ICSV24
,
London, England
(
July 23–27, 2017
), paper KL5, pp.
1
16
.
39.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon Press
,
Oxford
,
1966
), pp.
281
285
.
40.
L.
Zhang
and
P. L.
Marston
, “
Axial radiation force exerted by general non-diffracting beams
,”
J. Acoust. Soc. Am.
131
,
EL329
El335
(
2012
).
41.
L. A.
Crum
, “
Bjerknes forces on bubbles in a stationary sound field
,”
J. Acoust. Soc. Am.
57
,
1363
1370
(
1975
).
42.
T. G.
Leighton
,
A. J.
Walton
, and
M. J. W.
Pickworth
, “
Primary Bjerknes forces
,”
European J. Phys.
11
,
47
50
(
1990
).
43.
A.
Francescutto
and
R.
Nabergoj
, “
Pulsation amplitude threshold for surface waves on oscillating bubbles
,”
Acta Acust. united Acust.
41
,
215
220
(
1978
).
44.
M. S.
Longuet-Higgins
, “
Monopole emission of sound by asymmetric bubble oscillations. 1. Normal modes
,”
J. Fluid Mech.
201
,
525
541
(
1989
).
45.
M. S.
Longuet-Higgins
, “
Monopole emission of sound by asymmetric bubble oscillations. 2. An initial value problem
,”
J. Fluid Mech.
201
,
543
565
(
1989
).
46.
C. C.
Mei
and
X.
Zhou
, “
Parametric resonance of a spherical bubble
,”
J. Fluid Mech.
229
,
29
50
(
1991
).
47.
T. J.
Asaki
,
P. L.
Marston
, and
E.
Trinh
, “
Shape oscillations of bubbles in water driven by modulated ultrasonic radiation pressure: Observation and detection with scattering laser light
,”
J. Acoust. Soc. Am.
93
,
706
713
(
1993
).
48.
Z.
Feng
and
L.
Leal
, “
Nonlinear bubble dynamics
,”
Annu. Rev. Fluid Mech.
29
,
201
247
(
1997
).
49.
A. O.
Maksimov
, “
Hamiltonian description of bubble dynamics
,”
J. Exp. Theor. Phys.
106
,
355
370
(
2008
).
50.
See supplementary material at https://doi.org/10.1121/1.5020786 for the form of governing equations for the amplitudes of interacting modes (SuppPub1.pdf); for the scattering phase shift for parametrically distorted bubble (SuppPub2.pdf); for the comparison with experiment (SuppPub3.pdf).
51.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
1123
(
1993
).
52.
S.
Wiggins
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
(
Springer Verlag
,
New York
,
1996
), pp.
193
210
.
53.
L.
Zhang
and
P. L.
Marston
, “
Acoustic radiation force expressed using complex phase shifts and momentum-transfer cross sections
,”
J. Acoust. Soc. Am.
140
,
EL178
EL183
(
2016
).
54.
P. L.
Marston
and
L.
Zhang
, “
Relationship of scattering phase shift to special radiation force conditions for spheres in axisymmetric wave-field
,”
J. Acoust. Soc. Am.
141
,
3042
3049
(
2017
).
55.
P. R.
Birkin
,
Y. E.
Watson
, and
T. G.
Leighton
, “
Efficient mass transfer from an acoustically oscillated gas bubble
,”
J. Chem. Soc. Chem. Commun.
24
,
2650
2651
(
2001
).
56.
P. R.
Birkin
,
Y. E.
Watson
,
T. G.
Leighton
, and
K. L.
Smith
, “
Electrochemical detection of Faraday waves on the surface of a gas bubble
,”
Langmuir
18
,
2135
2140
(
2002
).
57.
P. R.
Birkin
,
D. G.
Offin
,
C. J. B.
Vian
,
T. G.
Leighton
, and
A. O.
Maksimov
, “
Investigation of non-inertial cavitation produced by an ultrasonic horn
,”
J. Acoust. Soc. Am.
130
,
3297
3308
(
2011
).
58.
A. O.
Maksimov
, “
On the volume oscillations of a tethered bubble
,”
J. Sound Vib.
283
,
915
926
(
2005
).
59.
D. G.
Offin
,
P. R.
Birkin
, and
T. G.
Leighton
, “
Electrodeposition of copper in the presence of an acoustically excited gas bubble
,”
Electrochem. Commun.
9
(
5
),
1062
1068
(
2007
).
60.
L. A.
Crum
and
A. I.
Eller
, “
The motion of air bubbles in stationary sound field
,”
J. Acoust. Soc. Am.
48
,
181
189
(
1970
).
61.
T. J.
Matula
,
A. M.
Cordry
,
R. A.
Roy
, and
L. A.
Crum
, “
Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions
,”
J. Acoust. Soc. Am.
102
,
1522
1527
(
1997
).
62.
R. G.
Holt
and
L. A.
Crum
, “
Acoustically forced oscillations of air bubbles in water: Experimental results
,”
J. Acoust. Soc. Am.
91
,
1924
1932
(
1992
).
63.
R. G.
Holt
and
D. F.
Gaitan
, “
Observation of stability boundaries in the parameter space of single bubble sonoluminescence
,”
Phys. Rev. Lett.
77
,
3791
3794
(
1996
).
64.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic Press
,
London
,
1994
), pp.
415
419
.
65.
J.
Ellenberger
and
R.
Krishna
, “
Levitation of air bubbles in liquid under low frequency vibration excitement
,”
Chem. Eng. Sci.
62
,
5669
5673
(
2007
).
66.
D. G.
Offin
,
P. R.
Birkin
, and
T. G.
Leighton
, “
An electrochemical and high-speed imaging study of micropore decontamination by acoustic bubble entrapment
,”
Phys. Chem. Chem. Phys.
16
,
4982
4989
(
2014
).
67.
Z. W.
Fan
,
D. Q.
Mei
,
K. Y.
Yang
, and
Z. C.
Chen
, “
Acoustic radiation torque on an irregular shaped scatterer in an arbitrary sound field
,”
J. Acoust. Soc. Am.
124
,
2727
2732
(
2008
).
68.
L.
Zhang
and
P. L.
Marston
, “
Acoustic radiation torque and the conservation of angular momentum
,”
J. Acoust. Soc. Am.
129
,
1679
1680
(
2011
).
69.
L. A.
Crum
and
A.
Prosperetti
, “
Nonlinear oscillations of gas bubbles in liquids: An interpretation of some experimental results
,”
J. Acoust. Soc. Am.
73
121
127
(
1983
).

Supplementary Material

You do not currently have access to this content.